Hash Table

· Search time: Double, Chain, LinearList O(n)

· Sorted arrays can be searched in O(log n)

· Can we go down to O(1)?

· Yes, provided we have unlimited memory.

· So far position wasn’t meaningful

· Let us look at the example of a student record.

· Student number goes from 000-000-0 to 999-999-9. That means theoretically we have 10 million student numbers.

· If we store the student records in an array with 10 million records, such that student number is the array index. Then accessing any student record will take constant time.

· We have substantially fewer students than the 10 million records reserved for them.

· Let us assume we need to have 100,000 entries.

· We could map the student number to a number between, 0 to 99,999 using a hash function.

· index = hash(key)

· For our example, index = hash(student number).

· Chances are that more than one key will be mapped to the same index, this is called collision.

· We need collision resolution mechanism.

· Two types of collision resolution mechanisms:

· Open addressing (read from the book, important for a descriptive question on an exam)

· Chaining (We will work with this)

· hash functions can use truncation of the key:

· 9785679 -> 85679

· For our assignment, we will ignore the first two digits and add up the remaining and then use remainder opertor.

· int hash(const char num[])

· {

·
int index = 0;

·
for(int j = 2; j < 8; j++)

·

index += (num[j]-’0’);

·
return index;

· }

· Our hash function takes a number from 0 - 9999999 and reduces to a number between 0 to 45

· We will use hash(student_number) % HashTableSize;

· More than one student number may map to the same hash value

· We need collision resolution mechanism: chaining

· The hashtable is an array of linked lists

· We will use the chash.h from chapter7 page 352 as the guide for creating our hashtable

· template <class T>

· class HashTable
{

·
int D;

·
Double<T> *ht;

·
public:

·
HashTable(int divisor = 11)

·
{....}

·
~HashTable(){delete [] ht;}

·
bool Search(T& rec);

·
Hashtable<T>& Insert(const T& rec);

·
HashTable<T>& Delete(T& rec);

· };

· Algorithms:

· Constructor: see chash.h

· Search:

· index = rec.hash()%D;

· int loc = ht[index].Search(rec);

· Insert:

· index = rec.hash()%D;

· int loc = ht[index].Search(rec);

· if(rec is not in ht[index]) ht[index].Insert(ht[index].begin(),rec)

· Write Delete yourself:

· Preparing for using the HashTable.

· The type T now needs two functions:

· Comparison operator that only compares the key field.

· It needs a function called hash as a member.

· If every key collides with every other key, all the records will be in one linked list. Time Requirement for every operation will be O(n).

· Typically, the m = expected number of records that will collide with each other is expected to be smaller than n.

· What will be the general time requirement O(m), if m<<<n, we have an improved searching mechanism.

· The cost of this improvement is the additional linked lists that will be used. Every linked lists stores three variables, LeftEnd, RightEnd, length.

