· the definition of a binary tree is recursive

· a node in the binary tree can have 0, 1, or 2 children

· 0 children means both subtrees are empty

· 1 child means one subtree is empty

· 2 children means both subtrees are not empty

· The order of the subtrees is important

· Inorder A,

[image: image1.wmf]A

B

C

d

e

f

g

Inorder: A f d g C e B

Postorder: f g d e C B A

Preorder: A B C d f g e

Breadthfirst: A B C d e f g

A

B

C

d

e

f

g

SYMBOL 183 \f "Symbol" \s 10 \h
Ancestor. A is an ancestor of B if A is the root of a tree consisting of B.

· The following recursive definition is easier to program

A is an ancestor of B if

1.
A is parent of B

2.
There exists a C such that A is parent of C and C is ancestor of B.

· Siblings

· A is a sibling of B if A is not equal to B and there exists a C such that C is parent of A and C is parent of B.

· First cousin

· A is a first cousin of B if there exists C and D such that C is parent of A and D is parent of B, and C and D are siblings

· Let us first understand all the concepts and then look at the ADT definition

· Traversals

· Inorder traversal

· Traverse the left subtree

· Visit the node (generally print the contents)

· Traverse the right sub tree

· Preorder traversal

· Visit the node (generally print the contents)

· Traverse the left subtree

· Traverse the right sub tree

· postorder traversal

· Traverse the left subtree

· Traverse the right sub tree

· Visit the node (generally print the contents)

· breadth first traversal

· Start from level 1 and for every level visit the nodes from left to right

· The actual algorithm is a bit more complicated

· The convention used in this book is different from the one.

· Empty subtree has a height of 0

· Root is at level 1

Representation of binary trees in your programs

· Similar to the lists, we can store binary trees in contiguous form and linked form

· Linked form is conceptually simple

· Contiguous form may not be quite that obvious

· Binary tree is two dimensional while array (contiguous form) is one dimensional

· What we need is mapping from two dimensions to one dimension

· Complete a binary tree by adding dummy nodes with null values

· Traverse it breadth first and store the items in the array as you go.

· Binary tree is two dimensional while array (contiguous form) is one dimensional

· What we need is mapping from two dimensions to one dimension

· Complete a binary tree by adding dummy nodes with null values

· Traverse it breadth first and store the items in the array as you go.

· 5,2,6,0,?,?,8,?,?,?,?,?,?,7,9

· 1,2,3,4,5,6,7,8,9,0,1,2,3,4,5
· Actually, there is no need to complete the tree to put it in an array.

· If an item goes in position I, its left child will be in position 2*I, and right child in position 2*I+1.

· You can use this formula to find out position of each item in the tree. Use these positions to fill the array. Rest of the positions will have null values.

· See another example from the board.

· Generally, you don’t want to use the contiguous representation. But sometimes, we can look at an array as if it were a binary tree. This helps in applying some of the tree algorithms, such as heap sort to an array.

· Quiz: For the tree shown on the board, do all the four traversals, calculate the height of the tree and provide the array representation

· Height = 6

· Breadthfirst: +,6,-,7,*,+,+,7,*,6,9,9,8

· Postorder: 6,7,7,9,8,*,+,6,9,+,*,-,+

· Preorder: +,6,-,7,*,+,7,*,9,8,+,6,9

· Inorder: 6+(7-(7+(9*8))*(6+9))

· Array see the board.

_1010399508

