· The member functions cannot be written recursively

· for example we CANNOT have preorder function as follows:

template <class T>

void BinaryTree<T>::PreOrder(visit)

{

if(root)

{

visit(root);

root->leftchild.Preorder(visit);

root->rightchild.Preorder(visit);

}

}

· root->leftchild.Preorder(visit); is not possible because root->leftchild is not a BinaryTree.

· That is why we add the private functions such as PreOrder with two parameters.

· The private functions can be recursive because instead of root we pass root->leftchild and root->rightchild to the recursive calls.

· The only non-recursive algorithm in binary tree is levelorder

· One can come up with a recursive algorithm, which takes O(n log n), it can be further improvd to give O(n), but it is more complicated than iteration

· Iterative algorithm is the easiest to understand in this case.

· Any recursive algorithm can be written iteratively and vice versa. The time requirements using Big Oh notations will be the same. The choice depends on which one is more readable.

· We use a queue for level order, see the example on the board.

· We haven’t seen applications of Binary tree so far.

· Generally, application decide how a tree would be built

Binary Expression Trees

· 9 + 8 * 7. Infix expression need to specify the operator precedence. If we want to override the precedence, we use brackets: (9+8)*7

· Prefix and postfix notations

[image: image1.wmf]+

9

*

8

7

+

9

*

8

7

Evaluate a BXT

· If the root is nil, return 0

· If the root is a number, return its value

· evaluate left subtree to get lvalue

· evaluate right subtree to get the rvalue

· use the root operator on rvalue and lvalue

· Binary Expression trees can be easily built from prefix expressions only.

· remove the head of the prefix list and put it in the root

· if root is an operator

· build the left subtree using remaining prefix expression (you may not exhaust the expression)

· build the right subtree using the remaining prefix expression (you may not exhaust the expression)

· Draw the binary expression tree for the following prefix expression and evaluate the tree.

· + * + - / 1 2 4 * 3 2 + 4 5 + 6 / + 3 3 3

· The answer is 30.5

_1011003078.doc

+

9

*

8

7

+

9

*

8

7

