void BXTree::build(BinaryTreeNode<Token>*& t, queue<Token> &l)

{


if(!l.empty())


{


t = new BinaryTreeNode<Token>;


t->data = l.front(); l.pop();


if (t->data.IsOperator())

{



build(t->leftchild,l);



build right subtree

}

}

}

· build(t->leftchild,l); also sets the leftchild to be the root of left subtree

· We can even break it down as

· build(temp1,l); t->leftchild = temp1;

· Evaluate()

· return Evaluate(root)

· Evaluate(t)

· if t is null return 0;

· if t->data.IsOperator()

· L = Evaluate(t->LeftChild)

· R = Evaluate(t->RightChild)

· switch(t->data.a[0])

· case ‘+’: return L+R

· etc.

· else return t->data.Value()

· Bonus question in the lab:

· Derive ModifiedBinaryTree from BinaryTree

· Rewrite the levelorder function

· Use two queues, one for current level and one for next level

· See the board

· Number of files

· token.h

· token.cpp

· bxtree.h

· bxtree.cpp

· binary.h

· btnode2.h

· xcept.h

· calc.cpp

· We compile calc.cpp, bxtree.cpp, token.cpp separately, and link them together

Binary Search Trees

· Binary trees by themselves don’t have inserting and deleting strategies. We had to build the tree from bottom up.

· Binary expression trees had fixed building strategy from prefix expressions

· Binary expression trees are static in the sense that we cannot keep on adding or deleting nodes to the BXTree once it is built

· Binary search trees use dynamic insertion and deletion

· Binary search tree is either empty

· Or has a root 

· and left and right subtrees which are binary search tree

· Every item in the left subtree is smaller than the item in the root

· Every item in right subtree is larger than the root

· Do a inorder traversal of the binary search tree on the board

· 2,4,7,8,10,12,14,16,20,24,28,30,32

· Tree sorting algorithm:

· Build a binary search tree from a given list of number

· Print it out inorder

· If BST is reasonably balanced (to be defined later on) the search time is log n

· If you traverse BST inorder you get sorted items

