Heap Sort

· See the board for demonstration

· Definition of a heap

· Root is at least as large as its children

· Left and right subtrees are heaps

· Given an array, draw the corresponding tree

· Use reheap algorithm to turn the tree into a heap

· Reheap algorithm

· Assume left and right subtrees are heaps

· Compare the root with roots of left and right subtrees

· Larger one moves into the root

· If the item that was moved was from left or right subtree, that subtree may not be a heap anymore

· apply reheap to that subtree

· Heapify

· Start from the middle of the tree first subtree with children

· and reheap that subtree

· keep on going until we come to the first element

· Actul sort

· Swap the item in root with the last element in the array

· Now last item is the largest one, exactly where we wanted it.

· We ignore the last item, our tree shrinks in size by one

· Apply the reheap algorithm

· Keep on repreating until our tree is of size 1

· Reheap takes no more than log n, i.e. O(log n)

· Heapify calls reheap n/2*O(log n) = O(n log n)

· Actual sorting

· reheap is called n - 1 times, O(n) times

· O(n)*O(log n) = O(n log n)

· Total = O(n log n) + O(n log n) = O(n log n)

http://www.toolsofcomputing.com/heap_sort.htm
