Graph

· Trees are special cases of graphs. Binary trees are special types of trees.

· Graph theory is covered in greater detail in MAT305.

· Basic definitions from chapter 12.

· Graph is a pair (V,E). V are set of vertices. E is a set of edges, e, where e = (v1, v2) v1 and v2 are in V.

· directed edges and undirected edges

· if (v1,v2) is a directed edge then there is an edge from v1 to v2, but not necessarily an edge from v2 to v1.

· In addition to specifying that there is an edge from v1 to v2 we can also associate a weight with the edge.

· A directed graph with weights associated with each edge is called network.

· Let us develop Network ADT.

class Network

{


public:


Network(int n);


~Network();


bool Exist(int j, int k); // is there an edge from j to k


double Weight(int j, int k);


int Edges();


int Vertices();


void Add(int j, int k, double w);


void Delete(int j, int k); 


int InDegree(int j); // how many edges are coming into j


int OutDegree(int j); // how many edges are going out of j

};

· We first decide what functionality we want for network data type

· Indegree and outDegree is not necessary, since it can be obtained using the function Exist, but we will provide that because some algorithms need the degree of vertices frequently

· Network g;

· //inDegree of j

· For(int k = 1; k < = g.Vertices(); k++)

· If(g.Exists(k,j)) count++;

· How can we implement a graph?

· Adjacency matrix

· Adjacency list

· If there is an edge from j to k, then k is adjacent to j.

· Adjacency matrix will store a pair in location (j,k) of the type (bool x,double w). if (j,k) is an edge x is true and w gives us the weight. if x is false, w has undefined value.

· Adjacency list for vertex j, is a list of vertices adjacent to the vertex j. There is a list for every vertex.

· See the board for examples.

