Dijkstra’s Algorithm to find the shortest path

· Our naive algorithm will result in time complexity of O(n!)

· D’s algorithm is O(n^2)

· The algorithm finds shortest path from vertext j to k.

· In the process it may end up finding shortest path from j to many other vertices.

· We maintain an array of integers called p that tells us what was the previous node in the path, i.e. p[k] tells us what is the previous point in the path from orig to k.

· Array of doubles called d tells us length of the shortest path from orig to k, i.e. d[k] = legth of shortest path from orig to k.

· set p[k] to be equal to 0 for all the nodes, and set d[k] = infinity for all the nodes.

· d[orig] = 0;

· Let S be a set implemented using list or set from STL, initialized to empty

· ShortestPath(orig,dest)

· Initialize, S, p, d

· set d[orig] = 0;

 while(S.size() != N.Vertices())

 {

 int u = GetNext(N,S,d); // get a node with smallest d which is not already in S

 if(d[u] == infinity) return false;

 if(u == dest) return true;

 add u to S

 for(int v = 1; v <= N.Vertices(); v++)

 if(if there is an edge (u,v) && v is not in S)

 {

 if(d[u] + N.Weight(u,v) < d[v])

 {

d[v] = d[u] + N.Weight(u,v);

u is the previous node for v

}

}

}

return false;

· See the board for illustration of the algorithm

· We have seen how to translate from Rosen’s code (handout) to C++ code that uses Network ADT

· Our assignment is that we have a set of rooms, hallways connect the rooms

· Each room has a lock and we have a set of five keys

· Let us create a class called Building

· Is a network

· Class Building : private Network

· CanOpen(person, room)

· ShortestPath(person, orig, dest) // needs to be public

· PrintPath(orig, dest, p)

· GetNext(S,d)

· A table of keys (data member)

· Class Person

· An array of keys

· Class Key

