· Create a class called Smatrix which uses Strassen’s method for multiplication

· if size == 2

· result = strassen((*this)(1,1),.....,m(1,1),...,m(2,2))

· else

· change the matrix *this and m to 2 by 2

· SMatrix<T> a11(n/2,n/2),

· make_2X2(*this, a11, a12,a21,a22);

· make_2X2(m,b11,....);

· temp_result = strassen(a11,a12,.....,b22);

· result = unmake_2X2(temp_result)

· Note that there will be two different functions (created automatically) called strassen

· Strassen cannot be a member function

· One with doubles as parameters,

· another with Smatrix<double> as parameters.

· The mutiplications inside strassen will make indirect recursive call to the multiplication operator

· make_2X2(const Smatrix<T>& A, Smatrix<T>& a11,….

· Example for lower right corner

for (i = n/2+1; i <= n; i++)

 for (j = n/2+1; j <= n; j++)

 a22(i-n/2,j-n/2) = A(i,j);

· unmake_2X2

· Upper right

for (i = 1; i <= n/2; i++)

 for (j = n/2+1; j <= n; j++)

 AA(i,j) = A(1,2)(i,j-n/2);

· Lower left

 for (i = n/2+1; i <= n; i++)

 for (j = 1; j <= n/2; j++)

 AA(i,j) = A(2,1)(i-n/2,j);

· Need to add two constructors

· Smatrix(int r = 0, int c = 0):Matrix<T>(r,c){}

· Smatrix(const Matrix<T>& m):Matrix<T>(m){}

· These days there is little difference between multiplication and addition

· Even though Strassen’s method requires 15 additions instead of four, addtions are not recursive. Therefore big Oh for Strassen’s method is still better than conventional method

· In practice, the memory access takes a lot longer time than addition and multiplication making Strassen’s method slower than the conventional

