More about Java

· Chapter 5

· Constructor

· Automatically called when the object is constructed using the operator new

· You can choose not to define a constructor

· In that case, we call the constructors with no parameters

· You can have as many constructors as you want. They are distinguished by the parameters passed.

· These constructors may or may not have parameters.

· If all your constructors need parameters, then the default constructor from Java cannot be called

· For example for Integer, we couldn’t do

· J = new Integer(); // error

· Inheritance is specified using the word extends
· Multiple inheritance is not allowed but can be faked using interfaces (to be discussed later)

· BallWorld extends the Frame class

· World.show() is calling the show function from Frame

· The show() function in Frame calls paint. We must define out own paint()

· The show from the parent class calls the paint from the type of the object (polymorphism, more later)

· Modifiers: public, private, protected to control the access of the data members.

· Private is accessible inside that file

· If for example FrameWidth was private instead of public

· We can add a class such as:

class Another

{


void main(String [] args)


{



int i = BallWorld.FrameWidth;


}

}

· To ballworld.java and it will work because

· Private is accessible throughout the file

· FrameWidth is static, so even if we don’t create a variable of the type BallWorld, FrameWidth still exists.

· Protected is accessible to all the objects which are derived from this class

· Final is used to indicate that this is the last time this variable will be changed

· private static final int FrameHeight = 400;

· previous line is typically used to declare constants

· We can declare arrays like:

· BallWorld [] ballArray ;

· Arrays in java are semidynamic means their size doesn’t have to be known at compile time.

· The actual array is created at run-time, ballArray is just a handler

· BallArray = new BallWorld[whatEver];

· The previous statement only gives us whatEver number of handlers to BallWorld objects. The objects are not created yet

· We need a for loop to actually create the objects

· For(int I = 0; I < ballArray.length; I++)

· BallArray[I]=new BallWorld(ballColor)

· Every array once initialized has the member length with meaningful value

· Arrays of int, double, etc. are straightforward.

· For all other classes we only get an array of handlers

· We can change array size by creating a brand new array leaving a memory leak

· We can have truly dynamic collection called Vector

