· Given an infix expression: Priorities for the operators and parentheses. They make things complicated

· we use stack of operators instead of operands

· Operators have different priorities in stack and outside the stack

Operator
In stack priority
In-coming priority

)
-
-

^
3
3

*,/
2
2

+, -
1
1

(
0
4

while true do

if we are at the end of expression then

print the stack and quit

else

if x is an operand then

print x

else if x = ')' then

while top of the stack is not equal to '(' do

Delete an item from the stack

and print the item deleted

pop '(' from the stack

else

while the priority of the item on top of the

stack is not less than priority of x do

Delete an item from the stack

and print the item retrieved

push x on the top of the stack

end {while}

· (9*3)/(7+(5*4)) + (9 +72)/3^3

· Output:

· 9 3 * 7 5 4 * + / 9 72 + 3 3 ^ / +

· (goes on stack [(]

· 9 gets printed, * icp = 2goes on top of (because in stack priority isp of (is 0. [(,*]

· 3 gets printed,) prints out stack as long as (, pops (without printing it, []

· / goes on stack [/], (icp=4 goes on stack [/,(]

· 7 print, + goes on top of stack isp of (is 0 [/,(,+]

· (isp = 4 [/,(,+,(]

· 5 print, * on stack [/,(,+,(,*]

· 4 print,) print out until (, repeat for next) [/]

· + can’t go on top / pop and print / [+]

· see the board for the rest of the details

· See how the resulting expression was evaluated to 4

Inheritance continued

· Interface can be looked as special type of inheritance

· Interface only defines prototype of all the functions

· We can write programs using the interface variables as parameters for the functions.

· These programs can be used for different implementations of the interface

· A very good example is ListADT.java and UsesList.java

· Another good example is from the book

· Target is an interface and it is implemented in many ways

· The word abstract in java allows us to emulate an Interface

public abstract class Something

{

public abstract void firstFunction(int I);

public abstract int secondFunction();

}

Is same as an interface that looks as follows:

public interface Something

{

public void firstFunction(int I);

public int secondFunction();

}

· Interface can be looked as an abstract class with all abstract functions

· The following abstract class cannot be written using interface because it has one non-abstract function

public abstract class Anything

{

public abstract void firstFunction(int I);

public abstract int secondFunction();

public int thirdFunction(){return 15;}

}

· See Animal.java, Cat.java, Dog.java, Assembly.java for a more meaningful example

· Similarly, the Number in java is a abstract class as opposed to interface because there are two non-abstract functions called byteValue and shortValue (page 129)

· Multiple inheritance can be faked in java using interface

· Java permits implementation of multiple interfaces, you can combine that with a single inheritance

public abstract class MultipleInheritance

extends List implements AnInterface, ListADT

{

}

· Multiple inheritance is not permitted as was done in C++

· But implementation of multiple interfaces is permissible

· Which makes sense because a single object could do more than one job. But inheriting properties from multiple classes can lead to confusion

· Even though interface can be written using inheritance it is semantically quite different.

· Quiz 3:

· Write an interface called BasicCalculator that has a function called

· String evaluate(Vector v)

· Make PostFixCalculator and Calculator implement BasicCalculator

· Write a class called TryCalculator with the following functions

· Void print(BasicCalculator b, Vector v)

· The function prints vector elements followed by = followed by results of evaluate. Example 5 + 6 = 11

· In main, create one Calculator and another PostFixCalculator and pass them to the print function along with Vectors such as 5 + 6 and 7 8 9 + *

· Every class we have is derived from a base class called Object

· Page 124 and 125 lists the member functions of Object

· This allows us to get around the problem of not having templates (C++)

· We can always say that our “template” of the function accepts an Object

· We are only guaranteed to have those four functions.

· That is why we can apply the function toString as s.pop().toString();

· GetClass() can be a useful function. If you wanted to know what class you are getting in print from the quiz:

 void print(BasicCalculator b, Vector v)

 {

 String result;

 result = b.evaluate(v);

 System.out.println(v + " = " + result);

System.out.println(b.getClass());

 }

· Function getClass() can be handy in some cases when we are using substitutabilty

· Substitutability means we can send implementation and derivations of an interface or class, where a function is expecting the interface or base class

· See UsesList.java

· A derivation/implementation is guaranteed to have the members of the base class/interface. Therefore, this type of substitutability is accepted by the language

· Read three bulleted points from page 126

· What does inheritance mean:

· We have used in many different ways

· Sometimes we have objects that are base class + more (obvious interpretation)

· Sometimes we have objects that are really implementations of an abstract data type

· We have also created stack and queues from list, this is entirely different from the conventional meaning of inheritance

· Section 8.4 describes 6 different forms of inheritance

