Chapter 12

· Polymorphism

· There is pure polymorphism on one end and ad-hoc polymorphism on the other end

· And in between there are many different types of polymorphism

· Overloading without any system behind it is called ad-hoc polymorphism

· Square.empty()

· Stack.empty()

· Vector.empty()

· 12.2 Polymorphic variables and substitutability

· 12.3 Overloading

· 12.3.1 Non-programming example

· 12.3.2 Overloading and coercion

· Good example is operator overloading

· When we add two integers it is a different operation at machine level than adding two doubles

· They only share the name, and in some cases at an abstract level they may behave the same. 15 + 17 gives results similar to 15.0 + 17.0

· If you want to add and integer and a double, we don’t generally have an operator

· One changes to the other type. Many times integer is changed to double

· We don’t have separate operations for int + double, double + int, int + int, double + double

· We will generally have int+int, double+double, the rest of the polymorphism will be introduced using coercion

· That is automatic type conversion

· There is one extreme case, where we could only provide a single + operator for double

· Every other type gets converted to double

· 15 -> 15.0, 17 -> 17.0, 15.0+17.0->32.0->32

· Even though there is just single piece of code for +, we had these conversions that is why this will not qualify as pure polymorphism

· 12.3.3 discusses situation where we only have same name, but really no similarity

· Square.empty()

· Stack.empty()

· Vector.empty()

· Empty for Stack and Vector may be similar semantically, but for square it is quite different

· Stack and vector are collections, empty means there are no elements

· Square is a shape, empty means the area is zero

· The meaning of empty is in context and this type of overloading of names is not a bad programming practice

· 12.3.4 Parametric overloading

· Used quite often with constructors

· See page 199 for different constructors of the rectangle

· We can have the same name with different number of parameters

· C++ provides default values for parameters

· It simplifies the parametric overloading quite a bit

· We looked at the ad-hoc polymorphism and we are working our way towards the pure polymorphism

· Next step is overriding (12.4)

· From time to time we need to do things differently from the base class

· For example, the Infixcalculator Evaluate, needs conversion from infix to postfix before the evaluate from postfixcalculator is called. This type of overriding is refinement

· Sometimes you may want completely ignore the base class method and rewrite a brand new one

· For constructors, the call to default constructor (one with no parameters) of base is always made

· If you have a non-default constructor, you must make an explicit call to the base class constructor, and it has to be the first thing you do in the derived class

public class Base

{

Base(int x)

{

System.out.println ("Received " + x);

}

public static void f1()

{

}

}

public class Derived extends Base

{

Derived(int i, int j)

{

super(i);

System.out.println ("Received " + i + " and " + j);

}

public void f2()

{

super.f1();

}

public static void main(String[] args)

{

Derived d = new Derived(7,8);

System.out.println("Done");

}

}

· The next (higher) form of polymorphism is abstract methods

· We create abstract classes, and have abstract methods with null values

· So that we can have pure polymorphism

· Class Shape does not how to draw itself, but we will specify an abstract method called draw()

· So we can write a function that accepts one parameter of type Shape, and that function will use the draw method

SomeFunction(Shape s)

{

s.draw();

}

· We can call the function SomeFunction as:

· Square sq = new Square();

· Circle crc = new Circle();

· SomeFunction(sq);

· SomeFunction(crc);

· Assuming that Square and Circle were derived from Shape

· The method draw was specified as abstract method (12.5)

· SomeFunction is very close to pure polymorphism

· An example of pure polymorphism is the valueOf function for string type (Page 203)

· See Nothing.java.

· We are calling valueOf three times first two times we are passing the same Class, third time we are passing different class

· Same code of valueOf gets called for Integer as well as Nothing, but the effects are different

· Pure polymorphism means same code with different run-time effects

1. Ad-hoc polymorphism. The name is same but that is purely accidental. There is no semantic or code similarity. Example: Square.empty(), Vector.empty(). This type of name sharing can be desirable, but it is barely polymorphism.

2. Overloading and coercion. The name is same, semantically there are similarities. One step closer.

3. Parametric overloading. Name is same, semantics is same, code has similarities, but we need distinctly different functions.

4. Overriding as replacement. Name and semantics is same. (Could be between 2 and 3). We should think why we are using the same name in the derived class and basically rewriting the whole thing.

5. Overriding as refinement. Refinement is closer to polymorphism than replacement. Refinement. Name, semantics is similar. At code level we even reuse some of the previous code (super.Evaluate()).

6. Abstract methods. Almost there or there. But some of the methods are deferred. In that sense, there is the difference between next level. We can give this level the honor of being pure polymorpism. But there is a slight but important difference with No. 7.

7. Pure polymorphism. Same name, same semantics, same code. No deferred (abstract) methods.

5.5 Where do templates in C++ fit in? The name is the same, semantics is the same, programmer writtten code is the same, but compiled code is different. Above 5 for sure but under 6&7.

· Polymorphism means lower efficiency 12.7

