LECTURE 13

· Templates provide a form of polymorphism (FURTHER READING section from chapter 12)

· Same name but different type

· We are not repeating the code

· But the compiler actually creates new code for each variation of template parameters

· BinaryTree<int> and BinaryTree<EmployeeRecord> these are essentially similar code but compiler physically uses two different translated types

· This is slower (class creation) at compile time, but faster at runtime (all types are known)

· Not pure polymorphism because the computer is executing different statements

· Not simple overloading, we are doing more than sharing a name

· How can we have template type facility in Java?

· Use Objects. See List.java. List class will allow us to store any object. Because it is derived from Object

· Is the List class in Java faster than the template List we could write in C++?

· List template will be slow in compilation because it creates physically different copies of list class such as List<int>, List<double>. But run time is faster, because when the types are known, compiler can optimize the run time performance.

· Java execution relies on run-time information about the object. Polymorphism is default in Java.

· In C++ if we have a call to function operator<<(ostream& out, const Some& s);

· Some x;

· cout << x;

· Here cout is of the type osstream, which is derived from ostream

· C++ compiler assumes that cout when it goes to the output operator is ostream by chopping off any extra members. Overriden members from osstream are also ignored and the ones from ostream are used instead, unless we make them virtual.

AWT

· Abstract Window Toolkit (AWT)

· We will not look at individual classes in AWT

· For application development, we derive new class from Frame and then add various other components such as buttons, menus, dialogue boxes, list boxes, etc.

· Layout managers

I/O Java

· Two types InputStream and OutputStream

· Next level tells the source

· The level under Filter..putStream is used for certain Behaviour

import java.io.*;

public class IO

{

 public static void main(String [] a)

 {

 try

 {

 DataOutputStream fout = new DataOutputStream(new FileOutputStream("test.dat"));

 fout.writeDouble (78.9);

 fout.writeInt (35);

 fout.writeBoolean (true);

 fout.close();

 InputStream in = new FileInputStream("test.dat");

 DataInputStream fin;

 fin = new DataInputStream(in);

 System.out.println(fin.readDouble ());

 System.out.println(fin.readInt ());

 System.out.println(fin.readBoolean ());

 fin.close();

 System.in.read();

}catch(Exception e){}

}

}

· All the input/output related classes are derived from InputStream/OutputStream

· There is a distinction between classes that take care of sources and classes that take care of operations

· For example, FileOutputstream is related to source (file) while DataOutputStream is related to output

· Run IO.java and look at test.dat. The objects were written in binary form. More efficient, but can’t read the files that were created using text viewers.

