· Once you enter a catch block for a given exception, the exception is considered to be handled. Java will skip rest of the try block, but everything after the try block gets executed, unless there was a return statement in the catch block.

· Finally clause allows you to specify code that gets executed in any case:

· If there was exception

· If there was no exception

· Even if a return statement was encountered in the catch block

· See TryExceptions.java, ThisNThatException.java

· Read section 16.6

· If we derive a new class called NewTry from TryExceptions and override gonnaThrow, then we cannot say that the new gonnaThrow in newTry is going to throw something other than ThisNThatException

· This is important because we could have a function

F(TryExceptions t)

{

try{

t.gonnaThrow(…);

}catch(ThisNThatException e)

{

}

}

· Let us assume that NewTry.gonnaThrow was going to throw exception JustForFun

· If we make a call F(new NewTry()), the compiler will not be able to make sure that JustForFun was caught.

· Therefore, JustForFun will not be allowed to be thrown from NewTry.gonnaThrow

· 16.7 Passing the exceptions

· If your function doesn’t know how to handle some of the exceptions it is going to receive, instead of having an empty catch block, it is better to rethrow them automatically

· Page 275 function readLines doesn’t know what to do with IOException so it says I am going to throw any IOException I receive. Note there is no explicit throw statement in readLines.

