· Sets whose elements are numbered x1, x2, … , xn can be represented efficiently using a string of bits. For example, if x5 is in the set we set 5th bit to 1, and so on.

· Saves storage. All the set operations can be translated to bitwise operations.

· This is possible in C. But Java provides a special Class called bitset.

· See section 19.6 and Figure 19.1

Chapter 15 Design patterns

· How do you design an OOP.

· Researchers have identified many commonly occurring situations called design patterns. Problem and solution with examples

· Whenever you have a problem you compare that with a design pattern. If you problem matches a design pattern, you use the corresponding solution.

· There are more than 23 patterns identified by various researchers. See the suggested reading.

· The book mentions eleven

· Adapter: An existing class doesn’t do exactly what the client class wants. If you use the existing class the client class end up with a long code. You throw an intermediary (a class) that will do the translation

· Example: Pipe or Stack

· Composites: allow us to create complicated object by simply putting together simpler objects

· Composition needs to be flexible: An object of type1 may contain an Object of type2. An Object of type2 in turn may contain an Object of type1, etc.

· Strategy: Give user a choice to choose from one of the solutions

· We develop the entire application

· Use different layout manager to get a different look

· Observer: A form needs to know if an event has occurred, such as clicking a button or pulling down menu, etc. So that the form can change accordingly.

· Flyweight: If several classes have some elements in common. Create a family with base class storing the common information and the derived ones become lighter.

· Abstract factory: we don’t know the type of the actual object we only know what interface is implemented by the object. For example, we didn’t care what vector.elements() returned, we just called it Enumeration

· Factory: The derived class wants to change the type of the object returned by a method. Typically, we will say that the method returns an object of the type Object and then do the necessary typecasting.

· Iterator: Enumeration is a good example. Provide objects to traverse through your Object such as linked list or Binary tree or graph

· Decorator: adding more functions to an existing class (using inheritance)

· A curious combination of is_a and has_a relationships

· DataInputStream inherits (or implements) all the functionality of InputStream

· it also needs a data source which is kept in a handler of type InputStream. The handler may point to any data source such as PipedInputStream.

· Proxy is similar to adapter. Seems more for information hiding than making clients life easier.

· Bridge: Separate implementation from the API. For example, window in a java program is the bridge. Different platforms (MS Windows, Mac, X-Window) may use different ways of implementing window. But we don’t have to rewrite or recompile our Java programs for different platforms.

