Inheritance continued

· Interface can be looked at special type of inheritance

· Interface only defines prototype of all the functions

· We can write programs using the interface variables as parameters for the functions.

· These programs can be used for different implementations of the interface

· A very good example is ListADT.java and UsesList.java

· Another good example is from the book

· Target is an interface and it is implemented in many ways

· The word abstract in java allows us to emulate an Interface

public abstract class Something

{

public abstract void firstFunction(int I);

public abstract int secondFunction();

}

Is same as an interface that looks as follows:

public interface Something

{

public void firstFunction(int I);

public int secondFunction();

}

· Interface can be looked as an abstract class with all abstract functions

· The following abstract class cannot be written using interface because it has one non-abstract function

public abstract class Anything

{

public abstract void firstFunction(int I);

public abstract int secondFunction();

public int thirdFunction(){return 15;}

}

· Similarly, the Number in java is a abstract class as opposed to interface because there are two non-abstract functions called byteValue and shortValue (page 129)

· Multiple inheritance can be faked in java using interface

· Java permits implementation of multiple interfaces, you can combine that with a single inheritance

public abstract class MultipleInheritance

extends List implements AnInterface, ListADT

{

}

· Multiple inheritance is not permitted as was done in C++

· But implementation of multiple interfaces is permissible

· Which makes sense because of a single object could do more than one job. But inheriting properties from multiple classes can lead to confusion

· Even though interface can be written using inheritance it is semantically quite different.

· Every class we have is derived from a base class called Object

· Page 124 and 125 lists the member functions of Object

· This allows us to get around the problem of not having templates (C++)

· We can always say that our “template” of the function accepts an Object

· We are only guaranteed to have those four functions.

· That is why we can apply the function toString as s.pop().toString();

· Substitutability means we can send implementation and derivations of an interface or class, where a function is expecting the interface or base class

· See UsesList.java

· A derivation/implementation is guaranteed to have the members of the base class/interface. Therefore, this type of substitutability is accepted by the language

· Read three bulleted points from page 126

· What does inheritance mean:

· We have used in many different ways

· Sometimes we have objects that are base class + more (obvious interpretation)

· Sometimes we have objects that are really implementations of an abstract data type

· We have also created stack and queues from list, this is entirely different from the conventional meaning of inheritance

· Section 8.4 describes 6 different forms of inheritance

