Six different type of inheritance

1. Inheritance by specialization

· The most frequently used type

· The derived class adds more functions and overrides some of the existing ones

· Makes good use of polymorphism (more later)

· Various classes derived from frame are examples of these

2. Inheritance by extension

· Only adds more functions (same as specialization), does not override existing ones (different from sepcialization).

3. Inheritance by specification

· Interfaces and abstract classes are used as the base

· There is no real inheritance, it is a realization of the concept specified in the base

4. Inheritance for construction

· It is questionable whether we should use inheritance for this purpose

· It can also be implemented using composition

· Composition means instead of using another class as a base class, we make it data member

Class Stack extends Vector // Inheritance

{….}

Class Stack {

Private Vector v; …..}

· The book shows a Hole derived from Ball, when there is very little similarity between them

· But Hole can use a lot of methods from Ball, so a lazy programmer may decide to use inheritance

5. Inheritance for combination

· Using more than one base class

· Multiple inheritance (faked: see previous lecture)

6. Inheritance by limitation

· Chapter 11 discusses the example of stack in detail

· Is stack a Vector? If you say yes, you have to limit access to different functions. Because Vector allows changes in the middle should not be available for Stack

· C++ allows us to block members from the base class

Class Stack : Vector

{

}

· All the members from Vector are private in stack so users cacnot start adding and deleting members from the middle of the stack

· This is not easily possible in Java
· Example on page 32. Set is unordered, so if somebody calls IndexOf, we should override the method and say Don’t call IndexOf for set. Or throw an exception.
· Another example would be Binary Search Tree
· See Collection.java, BinaryTree.java, BinarySearchTree.java
· Binary search tree is structurally a binary tree, so we should have inheritance
· But binary search tree implements Collection
· See how we had to block functions such as postOrder
· Benefits of inheritance Section 8.7 (good for descriptive questions)
· Costs of inheritance Section 8.8 (good for descriptive questions)
