Inheritance (Lecture 11)

· It is now established that you cannot write a function to swap two Integers

· The only way it is possible is if we allow a setValue function for Integers

class PseudoSwap // This is not possible in Java

{

 public static void swap(Integer i, Integer j)

 {

 Integer temp = new Integer(i.intValue());

 i.setValue(j.intValue());// This is not possible in Java

 j.setValue(temp.intValue());// This is not possible in Java

 }

 public static void main(String [] a)

 {

 Integer x, y;

 x = new Integer(5); y = new Integer(7);

 swap(x,y);

 System.out.println("x = " + x + " y = " + y);

 }

}

· Should we even allow that type of swapping.

· Let us say that swap(x,y) is possible through setValue

· Z = x;

· Swap(x,y);

· This will change Z as a side effect, probably undesirable

· With commonly used classes such as Integers this type of situation may happen frequently

· Programmer may not be able to keep track of how many handlers are pointing to the same Integer object

· Section 11.3

· Figure 11.3 shows how changing y automatically changed x

· You should try not to provide setValue functions for your classes

· Unless you know that there is a single physical object associated with it

· For example, our edit box in Assignment 4.

· Typically, you would expect people to recreate a new object

class ChangeInteger

{

 public static void main(String [] a)

 {

 Integer x = new Integer(7);

 x = new Integer(x.intValue() + 1);

 System.out.println(x);

 }

}

· The old x is garbage that will be picked up

· Java decided to go this route because it is safer, programmers cannot keep track of how many handles are pointing to the same object

· Some times you want to copy objects.

· 11.3.1

· Shows how if you really want to copy x into y you should write a function may be called copy

· Y = x.copy();

· May be we shouldn’t call it copy()

· May be there should be standard name

· Many classes require cloneable objects, therefore there is a Cloneable interface and you have to implement that and override the clone function which is protected member of Object and make it public

· Unfortunately, the clone() defined in Object returns Object. You cannot change that.

· Therefore you have to use typecasting as shown on page 184: y = (Box) x.clone();

· Section 11.4 (Equality Testing)

· We have seen this in our class assignments

· If(str == “=”) // this is checking to see if both are pointing to the same object

· If(str.equal(“=”)) // we are checking if both have the same value

· There is a default equal that does byte by byte comparison provided by the Object

· Let us say we want to have a search program to locate variables

· Our variable has two fields name and value

· When we are searching for the variable we really don’t know the value, so our equal should only match the names

· Section 11.5

· Why is it not good to leave the decision about freeing memory to programmers?

· What kind of mistakes will a programmer make?

· How is garbage collection implemented?

· Chapter 12

· Polymorphism

· There is pure polymorphism on one end and ad-hoc polymorphism on the other end

· And in between there are many different types of polymorphism

· Overloading without any system behind it is called ad-hoc polymorphism

· Square.empty()

· Stack.empty()

· Vector.empty()

