Chapter 12

· Polymorphism

· There is pure polymorphism on one end and ad-hoc polymorphism on the other end

· And in between there are many different types of polymorphism

· Overloading without any system behind it is called ad-hoc polymorphism

· Square.empty()

· Stack.empty()

· Vector.empty()

· 12.2 Polymorphic variables and substitutability

· 12.3 Overloading

· 12.3.1 Non-programming example

· 12.3.2 Overloading and coercion

· Good example is operator overloading

· When we add two integers it is a different operation at machine level than adding two doubles

· They only share the name, and in some cases at an abstract level they may behave the same. 15 + 17 gives results similar to 15.0 + 17.0

· If you want to add and integer and a double, we don’t generally have an operator

· One changes to the other type. Many times integer is changed to double

· That is automatic type conversion

· There is one extreme case, where we could only provide a single + operator for double

· Every other type gets converted to double

· 15 -> 15.0, 17 -> 17.0, 15.0+17.0->32.0->32

· Even though there is just single piece of code for +, we had these conversions that is why this will not qualify as pure polymorphism

· 12.3.3 discusses situation where we only have same name, but really no similarity

· Square.empty()

· Stack.empty()

· Vector.empty()

· Empty for Stack and Vector may be similar semantically, but for square it is quite different

· Stack and vector are collections, empty means there are no elements

· Square is a shape, empty means the area is zero

· The meaning of empty is in context and this type of overloading of names is not a bad programming practice

· 12.3.4 Parametric overloading

· Used quite often with constructors

· We can have the same name with different number of parameters

· C++ provides default values for parameters

· It simplifies the parametric overloading quite a bit

· We looked at the ad-hoc polymorphism and we are working our way towards the pure polymorphism

· Next step is overriding (12.4)

· From time to time we need to do things differently from the base class

· For example, the Infixcalculator Evaluate, needs conversion from infix to postfix before the evaluate from postfixcalculator is called. This type of overriding is refinement

· Sometimes you may want completely ignore the base class method and rewrite a brand new one

· For constructors, the call to default constructor (one with no parameters) of base is always made

· If you have a non-default constructor, you must make an explicit call to the base class constructor, and it has to be the first thing you do in the derived class

public class Base

{

Base(int x)

{

System.out.println ("Received " + x);

}

public static void f1()

{

}

}

public class Derived extends Base

{

Derived(int i, int j)

{

super(i);

System.out.println ("Received " + i + " and " + j);

}

public void f2()

{

super.f1();

}

public static void main(String[] args)

{

Derived d = new Derived(7,8);

System.out.println("Done");

}

}

· The next (higher) form of polymorphism is abstract methods

· We create abstract classes, and have abstract methods with null values

· So that we can have pure polymorphism

· Class Shape does not how to draw itself, but we will specify an abstract method called draw()

· So we can write a function that accepts one parameter of type Shape, and that function will use the draw method

SomeFunction(Shape s)

{

s.draw();

}

· We can call the function SomeFunction as:

· Square sq = new Square();

· Circle crc = new Circle();

· SomeFunction(sq);

· SomeFunction(crc);

· Assuming that Square and Circle were derived from Shape

· The method draw was specified as abstract method (12.5)

· SomeFunction is in fact pure polymorphism (12.6)

· Pure polymorphism means same code with different run-time effects

· Polymorphism means lower efficiency 12.7

