How to Survive and Prosper
in the C4++ Laboratory

Part |

A Lab Manual
for
Beginning C++ Programmers

© 2004

Porter Scobey
Department of Mathematics and Computing Science
Saint Mary’s University
Halifax, Nova Scotia, Canada

Latest Revised Printing: August 23, 2004

Table of Contents

Table of Contents i
Preface ix
Typographic and Other Conventions XV

1 A first look at C++4: simple programs that only display text 1
1.1 Objectives 1
1.2 List of associated files 2
1.3 Overview e 2
1.4 Sample Programs L oo 3

1.4.1 hello.cpp is everyone’s first C++ program and simply
displays “Hello, world!” on the screen 3

2 A first look at program development: top-down design with

step-wise refinement 13
2.1 Objectives oL 13
2.2 List of associated files 13
2.3 OVerview e e e 13
2.4 Sample Programs o oL o 14

2.4.1 name_address.cpp displays two names and addresses and
shows how to position output 14
3 Displaying both text and numerical output 23
3.1 Objectives e 23
3.2 List of associated files 23
3.3 Overview e 23
3.4 Sample Programs L oL 24

3.4.1 integers_text.cpp displays output containing both integers
andtext L 24

3.4.2 reals_text.cpp displays output containing both real

numbersand text L Lo 27

3.4.3 errors.cpp contains both syntax errors and output
formatting errors for youto fix 30

Reading numbers and characters from the keyboard 33

4.1 Objectives e 33

4.2 List of associated files oL 34

4.3 Overview 34

4.4 Sample Programs Lo o 34
4.4.1 simple_io.cpp illustrates how to prompt a user for input

and how to input and output simple values 35

4.4.2 pausing.cpp illustrates how to make a program pause and
wait for the user to press the Enter key before continuing 38
4.4.3 whitespace_ignore.cpp illustrates how to read whitespace

and how to ignore unwanted input 41
4.4.4 test_io.cpp provides further practice with user input from
the keyboardo oL 44
Simple file input and output 47
5.1 Objectives oL 47
5.2 List of associated files L. 47
5.3 Overview 47
54 Sample Programs Lo 47
5.4.1 textfile_io.cpp illustrates how to read input from a textfile
and write output to a textfile 48

A simple “shell” starter program with I/0, a menu, selection,

and looping 55
6.1 Objectives 55
6.2 List of associated files L. 56
6.3 Overview 56
6.4 Sample Programs o 56

6.4.1 shell.cpp provides a general-purpose menu-driven “shell”
starter program Lo 57
Evaluating arithmetic expressions 61
7.1 Objectives oL 61
7.2 List of associated files L. 61
7.3 OVerview e e e 61
7.4 Sample Programs Lo Lo 62

7.4.1 eval_expressions.cpp evaluates arithmetic expressions and
displays those values 62

7.4.2 more_operators.cpp illustrates the increment, decrement,
and some special assignment operators 65
Using library functions 67
8.1 Objectives 67
8.2 [List of associated files L. 67
8.3 Overview 67

8.4 Sample Programs o 68

ii

8.4.1 library_functions.cpp performs calculations using functions

from the standard cmath library 68
9 Converting data values from one data type to another 71
9.1 Objectives 71
9.2 List of associated files 71
9.3 Overview 71
9.4 Sample Programs 72

9.4.1 number_conversion.cpp converts values from one numeri-
cal data type to another L. 72

9.4.2 char_int_conversion.cpp illustrates how to convert between
char and int data values by type casting 75

10 A second look at program development: structure diagrams

and tracing 79
10.1 Objectives 79
10.2 List of associated files 79
10.3 Overview oo o 79
10.4 Sample Programs oL oL 80

10.4.1 shopping_list.cpp contains a simple “application program”
that prints a shopping list 80
11 The bool data type and conditional expressions 87
11.1 Objectives o 87
11.2 List of associated files 88
11.3 Overview o 89
11.4 Sample Programs Lo 90

11.4.1 bool_data.cpp illustrates the bool data type, a boolean
variable, and the evaluation of expressions which have
boolean values L. 90

12 Making decisions with selection control structures (no looping) 95

12.1
12.2
12.3
12.4

Objectives 95
List of associated files 96
OVerview o e e 96
Sample Programs L oo 96

12.4.1 if.cpp illustrates typical uses of the if-statement, the
if...else-statement, sequential if-statements, and a nested

if-statement 97
12.4.2 switch.cpp illustrates how to use the switch-statement . . 100
12.4.3 wages.cpp performs conditional computation of wages . . 103

13 Repeating one or more actions with looping control structures

(no selection) 107
13.1 Objectives o 107
13.2 List of associated files 108

il

13.3 Overview e e 108

13.4 Sample Programs L oo 109
13.4.1 square_integers.cpp calculates squares of integers using a
while-loopo 109
13.4.2 sum_integers.cpp computes sums of integers using a
do...while-loop 112

13.4.3 display_sequences.cpp displays character and numerical
sequences using for-loops, and also illustrates sequential
loops L 115
13.4.4 rounded_average.cpp computes the rounded integer
average of all integer values on each input line, and also

illustrates nested loops 118
13.4.5 draw_box.cpp displays an empty box with user chosen size,
border and position 121

14 Consolidation of I/0O (including file I/0), selection and looping123

14.1 Objectives 123
14.2 List of associated files 123
14.3 Overview o 124
14.4 Sample Programs L o 125
14.4.1 positive_average.cpp computes the average of just the
positive integers entered from the keyboard 125
14.4.2 extreme_values.cpp finds the largest negative and smallest
positive integers entered from the keyboard 128
14.4.3 odd_squares.cpp computes the squares of just the odd
positive integers entered from the keyboard 131
14.4.4 two_flags.cpp tries to have the user enter an integer from
1603 . o 134
14.4.5 count_characters.cpp counts capital letters and small
letters in a textfile 137
14.4.6 sum_odd_positives.cpp computes the sum of all odd
positive integers up to a limit entered by the user 140
14.4.7 test_input_stream.cpp illustrates how to test an input stream
to determine if it is still functioning properly 142
14.4.8 input_filename.cpp shows how to read in the name of an
input file at run-timeo 146
15 Programmer-defined value-returning functions 149
15.1 Objectives o 149
15.2 List of associated files L. 150
15.3 Overview e 150
15.4 Sample Programs L oL o 152
15.4.1 ftemp_to_ctempl.cpp converts a Fahrenheit temperature
to Celsius with a value-returning function 152

v

15.4.2 ftemp_to_ctemp2.cpp contains a function prototype
and function documentation but performs just like

ftemp_toctempl.cpp 157

16 Programmer-defined void functions 161
16.1 Objectives L 161
16.2 List of associated files 162
16.3 Overview o . . o 162
16.4 Sample Programs L oo 163
16.4.1 say_hil.cpp doesn’t use functions 163

16.4.2 say_hi2.cpp shows void functions without parameters . . . 164

16.4.3 say_hi3.cpp shows a void function with value parameters . 167
16.4.4 say_hid.cpp shows void functions with reference parameters170
16.4.5 swap.cpp illustrates function overloading and the

algorithm which exchanges two variable values 174

17 A third look at program development: program modularity,

program structure, information flow, stubs and drivers 179
17.1 Objectives o 179
17.2 List of associated files 180
17.3 OVerview o o i e e e e 180
17.4 Sample Programs o oL 186
17.4.1 stub_driver.cpp contains a generic shell program with stubs
and adrivero Lo 186
18 Consolidating I/0, files, selection, looping, functions and
program development 189
18.1 Objectives 189
18.2 List of associated files 189
18.3 Overview e e 190
18.4 Sample Programs oo 191
18.4.1 reverse_digits.cpp displays positive integers input from the
keyboard with their digits in reverse order 191
18.4.2 display_file_data.cpp displays on the screen the contents
ofatextfile 194
18.4.3 read_write.cpp copies data from file to file, and keyboard
to screen, using the same functions for both transfers. . . 197
18.4.4 report_wages.cpp contains a shell for a wage reporting
program, with stubs and a main driver 201
18.4.5 draw_boxes.cpp draws empty boxes using only
punctuation characters 204

19 Miscellaneous programs illustrating additional features of C++209

19.1 Objectives 209
19.2 List of associated files 210
19.3 Overview o o e e e e e e e e e 210

19.4 Sample Programs Lo 211
19.4.1 limits.cpp displays system-dependent limits for simple data

types.o 211
19.4.2 type_size.cpp displays the size in bytes of some C++

simple data types L. 214
19.4.3 increment_decrement.cpp shows why you must be very

careful when using ++ and -—- 215

19.4.4 dangling_else.cpp illustrates the “dangling else” problem . 217
19.4.5 bool_errors.cpp illustrates some potential pitfalls to avoid

when using conditional expressions 220
19.4.6 conditional_operator.cpp illustrates the conditional

operator 7 i 222
19.4.7 enumerated_type.cpp illustrates some properties of

enumerated types oL 224
19.4.8 number_bases.cpp displays numbers in decimal, octal, and

hexadecimal form oo 226
19.4.9 bit_operators.cpp illustrates some of the C++ bitwise

operators 228

19.4.10scopel.cpp to scopeb.cpp contain some “pathological”
examples to test your understanding of variable scope and

lifetime 230

C++ Reserved Words and Some Predefined Identifiers 239
A1l CH++ Reserved Words 239
A.2 Some Predefined Identifiers 240

B The ASCII Character Set and Codes 241
C Some C++ Operators and their Precedence 243
D C++ Programming Style Guidelines 245
D.1 The “Big Three” 245
D.2 Spacing and Alignment L0000 245
D.3 Naming and Capitalization 246
D.4 Commenting o 247
D.5 Program Structure o 247
D.6 Miscellaneous 248

Guidelines for Structured (Procedural) Program Development249

Introduction to your programming environment 251
F.1 Objectives o 251
F.2 Overview e 251

F.3 Questions needing local answers, with follow-up hands-on activities252

vi

G Introduction to your operating system 255

G.1 Objectives 255
G.2 List of associated files 255
G.3 Overview 256

G.4 Questions needing local answers, with follow-up hands-on activities256
G.4.1 Keyboard familiarization and (if applicable) logging in to

your computer 256
G.4.2 Changing your password (if applicable) 257
G.4.3 Communicating with your operating system 258

G.4.4 Files and file naming conventions, pathnames and the
“public repository”o 259
G.4.5 Displaying and printing a file (of text, of course) 260
G.4.6 Copying, renaming, appending and deleting files 263
G.4.7 Creating a short textfile without an editor 264

G.4.8 Other useful commands or procedures available in your
operating system oL Lo 265
G.4.9 Getting help on your operating system 266
H Useful local utilities 267
H.1 Objectives 267
H.2 Associated files 267
H.3 Overview 267
H.4 Questions needing local answers, with follow-up hands-on activities268
I Introduction to your editor 273
L1 Objectives 273
.2 List of associated files 273
I3 Overview 273

.4 Questions needing local answers, with follow-up hands-on activities274
1.4.1 Buffers in memory, files on disk, starting and stopping

your editor, and text insertion 274

1.4.2 Navigation (moving the cursor from one part of the buffer
toanother) L L o 276
1.4.3 Deleting text from the buffer 277
1.4.4 Moving or copying text by “cutting and pasting” 279
1.4.5 Finding specific text, and “find and replace” 280
1.4.6 Avoiding disasters 282
1.4.7 Additional miscellaneous editor commands 283
1.4.8 Getting help on your editor 284

J Customizing your programming environment with operational

shortcuts and file organization 285
J.1 Objectives 285
J.2 Associated files 285
J.3 Overview e e 286

J.4 Questions needing local answers, with follow-up hands-on activities286

vii

J.4.1
J.4.2
J.4.3
J.4.4
J.4.5
J.4.6

Index

Customizing your operating system (optional) 287

Customizing your editor (optional) 288
Creating and using subdirectories on your system 289
Organizing your files 290
Getting more information on customization 291
Other useful shortcuts 291

293

viii

Preface

How to Survive and Prosper in the C++ Laboratory is designed to be used as
a supplement to any C++ text that uses an “objects somewhat later” approach
to a study of the language. It can also be used for independent study to provide
a quick but thorough introduction to ANSI/ISO! Standard C++ by anyone
familiar with another programming language, such as Pascal or Java.

The title is an expression of the author’s hope (and belief) that if a student
exercises due diligence by working through all of the activities this manual offers,
then he or she will in fact achieve the title’s promise. This is not a full text on
C++, however, and it will be helpful to have at hand one of the many standard
C++ texts?, or references, for use as needed. On the other hand, with each
sample program we do explicitly point out what is new and exciting about that
particular program, and often add extra material to summarize, or place into
context, the feature(s) currently being illustrated. Thus a reader with some
prior programming language experience in another language would not, in fact,
necessarily need an auxiliary text to move quickly through the modules and
gain a good understanding of C++.

Use of the Lab Manual may begin with a discussion of all the things a
programmer needs to know about the local programming environment to get
started. If so, then students should be directed to one or more of the Appen-
dices F through I. The required programming environment topics are treated

An “objects later” approach
which can be used as a text
supplement or for indepen-
dent study

there in a generic-question-with-local-answers-to-be-supplied manner that makes A platform-independent

the treatment platform independent. This may or may not be a useful feature
of our presentation. However, many authors do seem to throw up their hands
in the face of programming environment questions, and leave the whole thing
to “local documentation”. In the aforementioned Appendices we at least go one
step further, by making sure the relevant questions are asked, and providing a

LANSI is an acronym for the American National Standards Institute and ISO stands for
International Standards Organization. On November 14, 1997 the combined ANSI X3J16/ISO
WG21 C++ Committee approved their latest draft and submitted it for official sanction, which
came late in 1998.

2 As a point of reference, the reader may be interested to know that during the development
of this Lab Manual the author has used as the main course text, at different times, both
Programming and Problem Solving with C++ by N. Dale, C. Weems and M. Headington
(Sudbury, MA: Jones and Bartlett, 1997) and Problem Solving with C++, Second Edition by
Walter Savitch (Reading, MA: Addison-Wesley, 1999). Both of these texts have more recent
editions.

ix

discussion of the
programming environment

Introductory Modules 1
and 2 contain much more
detail than most later
Modules.

A menu-driven “shell”
program is introduced early
and reused frequently

as a generic driver.

Independent Modules
permit various orderings.

The Module structure
remains consistent
throughout the text.

X Preface

place to record each answer.

Modules 1 and 2 provide introductions to C++ and to program development,
respectively. After completing these two Modules, but again only if desired or
necessary, students can return to a discussion of the local programming envi-
ronment in Appendix J, and look at the question of organizing their files and
placing them in appropriately-named subdirectories. In any case, Modules 3
to 5 in the mainstream part of the manual, next deal with simple input and
output (I/0), and by then we’re off and running.

The student is also introduced very early (Module 6) to a simple menu-driven
“shell” program that makes use of both selection and looping, in a very natural
way, and can be used as a starting point for the development of many programs
in the hands-on exercises that follow, if desired. The hands-on activities in-
volving the shell permit the student to do reasonably interesting things almost
immediately. The Manual structure does permit this Module to be postponed,
if the instructor does not wish to introduce this much this soon, and all activ-
ities in the following Modules that recommend use of the shell are explicitly
identified by a margin note. However, postponing that particular Module will
take something away from the student’s experience in the following Modules.
The frequent subsequent opportunities for using the shell program as a generic
driver in different situations expose the student, early and in a simple way, to
the benefits of code reuse.

Subsequent Modules fall into two categories. In the first and larger group,
each Module deals more or less with one specific topic—the remaining mate-
rial on selection or looping, for example, or programmer-written value-returning
functions. The second, and smaller, group consists of a number of consolida-
tion Modules, in which the various topics from previous Modules are brought
together in more complex programs. Because the Modules on individual top-
ics that lie between the consolidation Modules are essentially independent, an
instructor is free to cover the intervening Modules in any desired order.

Each Module has essentially the same structure, which is suggested by the
following outline:

e List of Module objectives

e List of files associated with the Module

e Module overview

e Discussion of sample programs included with the Module

— First program listing
* What you see for the first time in this program
* Additional notes and discussion on this program
* Follow-up hands-on activities for this program

— Second program listing ...

Preface xi

Those Modules from the Appendices designed to be used when dealing with
the programming environment may not have any associated files, and also will
have the section

e Discussion of sample programs included with the Module
replaced by one entitled
e Questions needing local answers, with follow-up hands-on activities

Furthermore, a programming environment topic will occasionally appear
within the sample program discussions of a mainstream Module, if that is the
most appropriate location for that topic. In Module 1, for example, which
introduces the C4++ programming language, there is a short programming envi-
ronment section that deals with what is needed to get a program up and running
on the local system. And in Module 13, Section 13.4.4, we see a program with
keyboard input terminated by an end-of-file character, so that section contains a
short programming environment subsection dealing with the system-dependent
question of how to enter an end-of-file character from the keyboard on the local
system.

Among the design goals for the hands-on activities are the following:

1. Keeping them to a reasonable number and length, so that most students
who are willing to apply themselves can be expected to complete all of
them, and neither the instructor nor the student will have to waste time
choosing or wondering which of them to do.

2. Making sure that each sample program, and the sequence of activities
associated with it, are all designed to illustrate some feature of C++, or
to provide important and relevant hands-on experience; nothing is there
just to provide busy work to keep students occupied.

3. Making it easy for an instructor to monitor a student’s progress by asking,
in most of the activities, for the creation of files with specific names, the
existence and/or the functionality of which can then be checked by the in-
structor or an assistant. In many programming environments this process
can be automated, especially if it is possible in the local environment to
read and run particular files in each student’s account directly from a lab
instructor’s workstation. In addition, throughout the hands-on activities,
at strategic points, you will see a line like this:

O INSTRUCTOR CHECKPOINT m.n FOR EVALUATING PRIOR WORK

This is really a (numbered) message to the student, which makes the
following statement:

Design goals for
the hands-on activities

Just the “right” number

No “fluff”

Specific file names
make it easy to
monitor student progress.

Milestone markers

Activities sometimes
extend the material.

Programming, like riding
a bicycle, is a skill that
needs to be developed.

Inatial bewilderment is much
more widespread than you
might think.

xii

Preface

Your instructor may wish to check, at this point, and before you
proceed, your progress since the last such checkpoint If so, you
should be prepared to show, submit in some way, or possibly
even demonstrate, whatever may be necessary to establish that
you have, in fact, finished the most recent activities up to that
point. This will normally mean that you must have prepared
source code and/or executable files having particular names, and
that when one of those executable files is run, the program must
exhibit particular functionality.

In other words, it’s a place where the instructor may (or may not) choose
to perform the suggested check. And, depending on the tools available in
the local programming environment, and the nature of the check that an
instructor wants to make at the time, the check may be automated to a
greater or lesser extent.

. Using the occasional activity as a vehicle for introducing some new, but

relatively minor, aspect of the C++ language that hasn’t yet shown up ex-
plicitly in any of the sample programs. For example, the escape sequences
\t and \n might show up in a sample program, with the additional escape
sequence \", and why it is needed, appearing only in a follow-up hands-on
activity.

If you are a student, you should be aware that computer programming is a

bit like riding a bicycle, playing the piano, or swimming, in at least the following
respects:

e First of all, it is a skill, and therefore a few people are “naturals”, but

most people require some effort (some a great deal more than others), and
(let’s face it) some people never quite get the hang of it.

e Initial attempts to acquire the skill are probably best supported by ac-

quiring a few basics, observing how other (good) practitioners do it, and
then imitating them as best you can.

e Finally, with time, you grow tired of imitating others, and begin to strike

out on your own, perhaps developing an independent approach and a new
style that reflects your own personality.

Beginning students in computing science® often have the experience of find-

ing themselves suddenly thrust into a strange environment, where they are faced

very quickly with a “sink or swim” situation. Much is expected of them, they

may not have been told many of the answers they need to know, and they can-
not even be expected to know all of the questions they need to ask. Some of

the students in this situation may not yet have the necessary survival skills, if

only because no one has thought to provide them.

3 Also referred to as computer science by a large number of people, possibly because they

have no fear of actual hardware.

Preface xiii

A major goal of this Lab Manual is to make each student’s ride over the
inevitable rough spots as smooth as possible, while also making it relatively
easy for an instructor to monitor the student’s progress. However, the most
important thing to be remembered by students, and emphasized repeatedly by
instructors, is that in all cases where difficulty is encountered, help must be
sought, and sought as soon as possible after the discovery that it is needed,
since it is always easier than you may think to fall behind.

However, do not lose sight of the fact that you are on an expedition, not a
tour*. You can’t just sit at the back of the bus and watch the world of C++ roll
by. You're going to have to get out and trudge through some of the thickets.

The particular pedagogical approach used throughout includes emphasis on
each of the following:

1. Bugging (by which we shall mean the deliberate insertion of bugs into
perfectly good sample programs, just to see the effect on the compiler
or the output, and making notes for future reference), antibugging (pro-
gramming in such a way that bugs are avoided, if at all possible), and
debugging (finding and eliminating the inevitable bugs that will occur,
sadly, despite all your best efforts).

An attempt is made to keep the student’s mind alive during the bugging
process. To this end, many of the bugging activities are worded in such
a way that the student is encouraged to become more familiar with the
requisite terminology, in context, rather that simply going through the re-
quired motions. As a simple example, in “bugging” a program containing
a loop, instead of being asked explicitly to remove the line of code

int n = 1;

(or referring to its line number) before recompiling and running the pro-

gram again, the student might be asked to remove “the statement that
initializes the loop control variable”.

On the other hand, when there is nothing in particular to be gained by
this approach, a direct reference to a source code line number may be
used.

2. Testing sample programs with typical data to see how they behave under
“normal” conditions, and also with extreme values to see when and why
they “break”; guiding the development of test sets for the student’s own
programs; modifying programs to produce related but different output, or
to produce the same output in a different way.

4This phrase, which captures so well the nature of things, is lifted shamelessly from the
preface to Navigating C++ and Object-Oriented Design by Paul Anderson and Gail Anderson,
(Upper Saddle River, NJ: Prentice Hall, 1998). To drive the point home, the author has been
known to appear at his first class of the term decked out in pith helmet, short pants, knee
socks, hiking boots and walking stick.

Yell for help
if you start to sink.

An expedition, not a tour

Pedagogical approach

((buggingﬁ

Testing, testing, testing

Style and substance
are equally important.

Structured programming

Programming with
objects comes later.

xiv Preface

3. Applying a consistent set of programming style and documentation guide-
lines throughout, since our view is that it is just as important for a program
to be clear and concise as it is to be correct and efficient. As far as we
are concerned, “clear and concise” will mean “source code that is easy to
read and understand, and a user interface that makes the program easy
to use when it runs”.

In an attempt to practice what we preach, virtually every sample program
that the student encounters will be at least minimally documented, and
will display a self-description when it runs. On those rare occasions when
this is not the case, there is a reason, and the reason will be given in the
text. It always gives the user a warm fuzzy feeling, when a program runs,
to be told by the program itself what that program is going to do, and
what input it needs, in order to do whatever it does. And this is true, of
course, independent of the program’s complexity.

4. Initial program development via top-down design with step-wise refine-
ment, pseudocode, structure diagrams, embedded debugging code, and
stubs and drivers (in keeping with the “objects later” approach).

5. Programming that uses structured data types, including classes and ob-
jects, will be covered in Part IT of this Lab Manual.

Constructive criticism of any kind is always welcome. In particular, spe-
cific suggestions for clarification in the wording, changes in the order of topics,
inclusion or exclusion of particular items, or anything that would improve the
“generic” aspect of the author’s approach to the programming environment,
would be especially appreciated.

For the constructive criticism received thus far I would like to thank the many
instructors who have used this Lab Manual during its development over several
years. Special thanks are due to Patrick Lee for his detailed lists of typos and
comments, which have thankfully grown shorter at time goes by. Many thanks
as well to Pawan Lingras and Stavros Konstantinidis, each of whom supplied a
number of corrections and suggestions along the way. Among the students who
have been very helpful in pointing out errors in both Part I and Part IT of the
Manual T would especially like to thank Maurice McNeille and John Wallace.

Porter Scobey

Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Nova Scotia

Canada B3H 3C3

Voice: (902) 420-5790
Fax: (902) 420-5035
E-mail: porter.scobey@stmarys.ca

August 23, 2004

Typographic and Other
Conventions

Here are the typographic conventions used in this Lab Manual:

e A slant font will be used for technical terms (and possibly variations
thereof) that are appearing either for the first time, or later in a dif-
ferent context, or perhaps to call your attention to the term again for
some reason.

e An italic font will be used to emphasize short words, phrases, and occa-
sionally sentences of a non-technical nature, as well as for margin notes. This is a margin note.

However, regular text will be used for a question placed in the margin
when an answer box needs to be filled in:

Answer OK so far?

e A bold font like this will be used from time to time for a longer
passage that is of particular importance, either in context, or for
the longer term.

e A typewriter-like monospaced font like this will be used for all
C++ code, including C++ reserved words and other identifiers within
regular text, for showing input and output to and from programs, and for
showing contents of textfiles.

There are some exceptions to this particular convention, with respect to
C++ reserved words that are used frequently in a very obvious way. For
example, from a certain point we may often use terms like “if-statement”,
“while-loop”, “void functions”, and so on, without using the typewriter-
like monospaced font to highlight the C++ reserved word.

See also the Objectives section of Module 12 on page 95.

XV

xvi

Typographic and Other Conventions

Here are some other conventions that we follow:

Each sample C++ program is in a file with a .cpp® extension, and the
name of the file will always appear in a comment in the first line of the file,
followed by a comment on one or more lines indicating briefly the purpose
of that particular program.

All supplied textfiles of input data will have an extension of.in, (or in?,
where 7 will be replaced by a digit indicating which of several input files
is under consideration). The name of a data file will be the same as the
name of the program file for which the given file is an input data file.

All textfiles, other than those that are also input data files, will have an
extension of. txt.

In earlier printings, we adhered to an 8.3 file naming convention (names of
no more than 8 characters, a period, and an extension of no more than 3
characters) in order to retain backward compatibility with older DOS en-
vironments. With this latest revision, it seems the time has come when we
can use longer names for files, in the interest of providing more meaningful
file identifiers, and in the hope that it will not cause any undue hardship
to users. When longer names consist of more than one word, the words
in the name are separated by an underscore (_). Notable exceptions are
filename and textfile which, for some reason (probably convenience)
the author has come to regard as single words in their own right.

5Some operating systems are case-sensitive, i.e., they distinguish between capital letters
and lowercase letters in filenames, and some are not.

Module 1

A first look at C+-+: simple
programs that only display
text

1.1 Objectives

e To understand the overall structure of a simple C++ program.

e To learn how the edit-compile-link-run-test cycle works in your program-
ming environment.

e To understand the following basic C++ language features:

comments

keywords

string constants

libraries, the #include compiler directive, and namespaces
The main function with an int return-type

The return statement

How a simple output statement uses the insertion operator << and
the manipulator endl to output a string constant

e To understand what is meant by syntax and semantics in a C++ program.

e To understand what is meant by programming style.

e To get some practice using the edit-compile-link-run-test cycle to modify
the given sample program, and to create some new programs of your own.

Bjarne Stroustrup,
inventor of C++

Learn by example,

and learn by doing.

Some important
considerations to
think about as you
begin to program

2 A first look at C+-: simple programs that only display text

1.2 List of associated files

® hello.cpp contains a program to display “Hello, world!” on the screen.

1.3 Overview

In this Module we begin our examination of the C++ programming language,
designed by Bjarne Stroustrup at Bell Laboratories in the 1980’s. The language
was first standardized in 1998, but it always takes some time for all the different
compilers that are available to comply with a new standard. In fact, it often
happens that by the time compilance becomes widespread the standard is re-
vised and the cycle begins all over again. In any case, we should never be too
surprised to encounter differences between what the C++ standard says should
be the case, and our “real world” experience with a particular compiler.

Our approach to learning the language, in this Lab Manual, will be to learn
by example and to learn by doing. This means that in each Module that deals
explicitly with C++ we will present one or more sample programs and use them
to point out new features of the language and new guidelines for programming
style. Following each sample program, you will find one or more hands-on
activities that require you to work with that program in various ways, and to
design and write one or more related programs of your own.

Learning to program is a complex activity, and a very important part of
it involves the reading, and subsequent modification (together with follow-up
testing and debugging), of already-written programs. This is how you become
familiar with the nuts and bolts of the language. Designing and writing your
own programs so that they are correct, easy to read and understand (by others
as well as yourself), and present a good user interface when they run is a whole
other kettle of fish, so to speak, for which good knowledge of the nuts and bolts
is necessary but (unfortunately) not sufficient. We will provide what we hope
is good advice along the way, but there is no substitute for lots of practice
and lots of positive response to constructive criticism of your work, and such
criticism should be both external (coming from others) and internal (coming
from yourself).

Starting with this Module you must also begin to use your particular pro-
gramming environment tools, whatever they may be. These will allow you to
edit, compile, link and run the sample programs provided, as well as those you
will write for yourself. As time goes on, you will be learning more about the
programming environment and the tools available to you. Becoming proficient
in their use will help you increase your productivity as a programmer, or (to use
the fifty-dollar term) as a software developer. See Appendices F to J for more
on the programming environment, if necessary.

© 0w N A W N e

[
I U S

A first look at C++: simple programs that only display text 3

1.4 Sample Programs

This Module actually contains only one sample program, and a very short pro-
gram at that, but it is your first, and hence there are quite a number of things
in it that you are seeing for the very first time. For that reason, we discuss each
new feature in some detail in what follows.

1.4.1 hello.cpp is everyone’s first C++4 program and
simply displays “Hello, world!” on the screen

//Filename: hello.cpp
//Purpose: Displays a "Hello, world!" greeting.
//Author: P. Scobey
//Date: 2004.08.17

#include <iostream>
using namespace std;

int main()

{

cout << "Hello, world!" << endl;

return O;

1.4.1.1 What you see for the first time in hello.cpp

e C++ comments

C++ comments are illustrated by the first four lines of code in the program
found in the file hello.cpp. Anything to the right of the two forward slashes
(//) on aline is treated as text for human readers only. Comments do not affect
the way the program itself works when it runs.

For the sake of brevity, our sample programs will usually contain only the
first two of the four comment lines shown in the above program, which give
the name of the file containing the program, and a brief description of what the
program is supposed to do. Furthermore, we will even omit the explanatory (but
somewhat redundant) labels Filename: and Purpose:. In longer programs, of
course, more comments will be required, both at the beginning of the program
and elsewhere, to provide additional information or clarification.

e C++ keywords: both reserved words and predefined identifiers

C++ has certain words that are special to the language. Some are very special,
must be used in very special ways, and are called reserved words (they are
reserved for use in their very special way). The reserved words in hello.cpp are:
int, using, namespace and return.

A reserved word can only be used by a programmer in the way in which
C++ requires it to be used. The other kind of special word, which is called a
predefined identifier, could perhaps be used in a way different from the way in
which it is normally used in C4++ but to do so would only cause confusion and

Reserved words
as keywords

Predefined identifiers
as keywords

C++ is a case-sensitive
programming language.

The main function

Function statements

Function body
enclosed by braces

Function header and
function definition

Returning a value of
data type int with
a return statement

Parentheses required
in function header

C++ libraries

4 A first look at C+-: simple programs that only display text

doing so should thus be avoided. The predefined identifiers in hello.cpp are:
include, iostream, std, main, cout, and endl.

We shall indicate below how each of these reserved words and predefined
identifiers is used. It is very important to remember that each reserved word
and each predefined identifier must be spelled correctly and capitalized correctly
because C++ is a case-sensitive programming language. All reserved words in
C++ are spelled using exclusively lowercase letters. Some predefined identifiers
use all uppercase (capital) letters, but none of the ones in this program do so.

e The main function and the return statement

Every C++ program that you will see for a while will consist of a collection
of functions that work together to accomplish whatever it is that the program
does. Exactly one of those functions must be called main, and it is with this
function that the program begins execution when it runs.

Any function, in turn, including main, consists of a sequence of statements
that, when executed, (ideally) perform a single specific task well. Each state-
ment is terminated by a semi-colon (;) and the sequence of statements (called
the body of the function) is enclosed within a pair of braces (i.e., “curly brack-
ets”) that look like this: { }. This is an oversimplification, of course, but at
least in the case of hello.cpp it is the task of the main function simply to display
on the screen the greeting:

Hello, world!

In mathematics it is the job of a function to compute, or, as we sometimes
say, “return” a single value. Many C++ functions also do this. The kind of
value “returned” by a C++ function is indicated by placing the name of a data
type in front of the name of the function in the function header (the first line
of the function definition). That is the purpose of the int in front of main in
the program of hello.cpp: to indicate that main will return, in this case, an
integer value (think of int as short for “integer”). The main function in our
sample programs will return an int' value. The second and last statement of the
program (return 0;) is the one that actually returns the integer value, which is
0 in this case. The value 0, in this context, is generally used to denote “success”
(the function has succeeded in performing its task), and if you are wondering
to whom or to what this value is actually “returned”, it’s the operating system,
which may or may not be “watching for” a value.

The parentheses () that appear after main are important, and they must be
present.

e The iostream C++ library, the #include compiler directive, and namespaces
The C++ programming language makes very extensive use of libraries. A C++
library often contains a number of related functions. Unlike the functions in
a program which are all designed to work together for some higher purpose,
the functions in a library are related in a different way: they usually perform

1See the last hands-on activity in this Module for an important note on the omission of
the return statement in main.

A first look at C++: simple programs that only display text)

similar or related tasks within some particular context. A case in point: the
iostream library, which contains functions for handling input to a program from
the keyboard and output from a program to the screen. Like many libraries,
the iostream library also contains things other than functions. In particular it
contains cout, which is not a function but a stream object (in fact, an output
stream object). Think of cout as representing a “stream of characters” that get
sent to the screen, and you insert something into the stream (and hence send it
to the screen) with the insertion operator <<. This is how we send the “Hello,
world!” message to the screen in hello.cpp, via the statement:

cout << "Hello, world!" << endl;

For your C++ program to make use of what is in a particular C++ library
you must “include” the header file corresponding to that particular library. In
hello.cpp this is accomplished by this line? of the program:

#include <iostream>

This line is an instruction (or directive) to the C++ compiler that says: This
program is going to use something from the iostream library, so before pro-
ceeding, go get the descriptions of everything in that library and put them into
this program (i.e., “include” the actual text) so that you will recognize what-
ever is being used when you see it. This is why a line like the one above is
called a compiler directive, and must not be confused with a C++ statement.
(Note, in particular, that a compiler directive does not end with a terminating
semi-colon, unlike a C++ statement.) The compiler always knows where to “go
get” the information, i.e., the library header files.
The line

using namespace std;

illustrates one of the more recent features to be added to the C++ language be-
fore the Standard was approved. We do not discuss this topic—namespaces—in
detail here. We simply point out that this line will appear in all of our pro-
grams, and its purpose is to indicate that the material included by the previous
#include compiler directives (just one in this case) belongs to the namespace
called std (which is provided in Standard C++).

Programmers (including yourself) may produce other namespaces containing
additional features (or replacements for features found in the Standard Library)
but this too is a topic for (much) later discussion. Think of it this way: Some-
times many different programmers contribute individual parts of the code for
a large program, and sometimes the same names get used for different things.
When this potential problem exists (and it always does in a large programming
project), use of namespaces can help to keep C++ (and those who program
using the language) from getting confused.

2Some compilers may (still) require the older (pre-Standard) form <iostream.h> instead
of <iostream> and some may permit either, but this Manual assumes you are working with a
compiler that is sufficiently up to date that you do not have to use the .h form of any header
file.

iostream library

Streams, output streams
and cout

The insertion operator <<

Compiler directives, or
to be somewhat more precise,
“preprocessor directives”

Namespaces

String constants

Splitting output
that extends over
more than one line

Manipulators
endl “flushes”
output stream

and sends a
newline character

syntax

semantics

6 A first look at C++: simple programs that only display text

e CH+ string constants

In C++ a string constant (often just called a string) is a sequence of characters
enclosed in double quotes, like "Hello, world!" in hello.cpp. Strings are very
important in programming, but for the moment we will use string constants only
to permit our programs to display human-readable text on the screen when they
run.

e A C++ output statement that displays text on the screen

When a C++ program runs, its output is often displayed on the screen by a
statement of the form

cout << thing_to_be_displayed << endl;

or sometimes by a single statement that extends over more than one line and
has the form

cout << first_thing << second_thing
<< third_thing << last_thing << endl;

where, for the moment, the only kind of “thing” we can display is a string
constant. Later on, of course, we will be able to display the results of numer-
ical calculations, the contents of memory locations that may contain values of
different kinds, and so on.

Even now, though, we may occasionally need to break up a single long string
constant that we wish to have displayed on one line into several shorter string
constants within a single cout statement as shown in the second pattern given
above. As you will see in Module 2, you can do this with or without placing
the insertion operator << between the successive segments of an extended string
constant that extends over more than one line.

The term manipulator is used to describe endl, which you can think of as an
abbreviation for “endline”. When this manipulator is inserted into the output
stream, the output stream is “flushed” (i.e., anything not yet sent to the screen
is now sent) and a newline character is also entered into the output stream and
sent to the screen (which means that any subsequent output will appear on a
new line of the screen display).

e A first glimpse at C++ syntax and semantics

The term syntax refers to the “rules of grammar” that must be followed when
constructing a C++ program if that program is to be valid. Thus, getting the
syntax right involves such things as spelling all the keywords correctly, putting
things in the correct order, and making sure the punctuation is correct.

The term semantics refers to the “meaning” of a syntactically correct (i.e.,
valid) program. With good luck, and good management, our programs will
eventually be correct and meaningful (i.e., they will have the meaning we in-
tended them to have, and do what we expect of them). Of course it is possible
to have a syntactically correct program that is meaningless, and along the way
we may see more of those than we had hoped for.

A first look at C++: simple programs that only display text 7

Compilers are very good at telling us when we have syntax errors, which
is why such errors are also called compile-time errors. Unfortunately, semantic
errors are often more subtle and often do not show up until we notice errors in a
program’s output at run-time. Hence semantic errors are also sometimes called
logic errors or run-time errors, and we will have to find those ourselves.

In the program hello.cpp it would be a syntax error if we placed the first
insertion operator << before cout instead of after it in the statement

cout << "Hello, world!" << endl;

which sends the greeting to the screen. However, the given output statement is
syntactically correct, and the semantics of that statement mean that the string
constant is to be sent to the screen and then a newline character is sent, moving
the cursor to the next line in the output.

e A first glimpse at C++ programming style

Because this is such a short program there is little opportunity for it to show
very much in the way of programming style. However, again because it is our
first program, it is all new and there are in fact a few things we should take
note of.?

First of all, note the extension on the name of the file containing our pro-
gram. We shall use .cpp to indicate that a file contains a C4++ program. This
is a very common convention, but it is by no means universal. Thus the choice
of extension to denote a C++ program file may be thought of as a matter of
style, to some extent, although your programming environment may try its best
to force a particular extension upon you.

Other very important aspects of programming style include the appropriate
use of vertical spacing and horizontal spacing, as well as indentation and align-
ment. The hello.cpp program illustrates a number of style conventions which
we shall continue to follow, except perhaps for certain situations where we may
violate the conventions for reasons which we will explain at the time. Here are
those conventions:

1. Put each statement on a separate line.

2. Use one or more blank lines (this is what we mean by vertical spacing) to
separate logically distinct parts of a program. In our example these parts
consist of the initial comments, the #include directive, and the main
function. Within main the output statement and the return-statement
are also separated by a blank line, though this is hardly necessary.

3. Place a blank space on each side of an operator such as << (an example
of what we mean by horizontal spacing).

4. Always indent a function body with respect to the corresponding function
header, and our indentation level will be four spaces.

30r, “of which we should take note”. A brave editor once complained to Winston Churchill
about his occasional ending of a sentence with a preposition. Winston’s reply: “This is the
type of arrant pedantry up with which I will not put!”

Syntaz errors (compile-time
errors) and semantic errors
(logic or run-time errors)

Programming style

File extension used
for C++ programs
will be .cpp

One statement per line

Vertical spacing

Horizontal spacing

Indentation level

alignment

Commenting as an art form

Always choose good names.

8 A first look at C++: simple programs that only display text

5. Align (i.e., “line up”) the beginning of each statement in a function body.
Also, place the braces enclosing a function body on separate lines and
align them with the beginning of the function header.

e The overall structure of a C++ program

It is important to get a feeling for what a C++ program “looks like”, i.e., its
overall structure. Again, because this is such a small program there is much
that we don’t see, but the order of things that we do see will be typical for a
while at least. This order is:

1. initial comments
2. one or more compiler directives
3. the “using namespace std;” line

4. the main function.

1.4.1.2 Additional notes and discussion on hello.cpp

There is a long-standing tradition, which we have followed, that whenever a pro-
grammer begins to study a new programming language, the first program that
should be examined is one that simply displays “Hello, world!” (or some such
greeting or statement) on the screen. Once a beginning programmer has man-
aged to get such a program to execute in the local programming environment,
he or she may be considered to be up and running!

This program was so short, and its purpose so “obvious”, that one could
argue that it needed no comments at all. In fact, commenting computer pro-
grams in any language is a bit of an art form, and one can always debate how
much commenting is required in any given program. Too much commenting can
make a program almost as hard to read and understand as too little. The goal
should always be program understandabilty, so whatever level of commenting
contributes most to the achievement of that goal is the right one.

We will try, as much as possible, to make our programs self-documenting.
This term usually refers to the practice of choosing good names for the entities
in your program and formatting your program well, thus reducing the need for
extensive comments.

1.4.1.3 Getting a program to run and getting comfortable with the
edit-compile-link-run-test cycle on your system

Once you know how to use your editor to enter a C++ program into a file on
your computer, the next thing you need to know is how to get that program
to run. This process differs from one system to another, so it is another of the
“local” pieces of information that you have to discover and record. Though the
details differ, and on many systems two or more steps are often combined into
a single command, the conceptual steps are generally the same and consist of
the following:

A first look at C++: simple programs that only display text 9

Edit the program, i.e., enter the source code of your program into a file with
the appropriate name.

Compile the program, i.e., submit the program to your compiler, which will
examine it for syntax errors and report any that it finds; if the program
is OK, the compiler will produce an intermediate file called an object file.

Link the object? file, i.e., submit the object file to the linker, a program which
takes the instructions in your own program and “links” them with what-
ever else is needed (code for stuff from the C++ libraries that you have
“included” in your program, for example) to produce an executable file.

Run the executable file, i.e., instruct the operating system to execute your
program, at which point your program takes over and does its thing.

Test the program, by entering all test data that you have previously (and care-
fully) prepared, in those cases where the program requires input (usually
the case, but not so for hello.cpp), and in any case checking the output
from the program to see that it is not only correct but formatted and
positioned properly.

Because very few programs compile, link, run and test correctly on the first
pass, for all but the simplest programs (such as hello.cpp, for example) the
above steps will have to be repeated a number of times before a program works
correctly. Hence we often refer to the edit-compile-link-run-test cycle. The cycle
begins again when you go back to the editor to remove one or more bugs that
the compilation phase or the testing phase has revealed.

Answer

4By the way, it probably wouldn’t hurt to mention that the use of the term object in this
context has nothing at all to do with object-oriented programming, whatever that may be!

On your system, how do you
get the program in a source
code file to compile, link and
run?

Are there special things you
should know about what to do
when you have errors?

Program “bugging”

Program modification
and program writing

How to properly “bug”
Your programs

10 A first look at C++: simple programs that only display text

Answer

1.4.1.4 Follow-up hands-on activities for hello.cpp

This is your first set of hands-on activities dealing with a sample C++ program,
and they are reasonably typical. You begin by making your own copy of the
file containing the sample program from wherever the files for this Manual are
stored. Then you compile, link and run your copy to see how it performs.

After this, you introduce changes (which may or may not be errors) into the
program, and then try to re-compile, re-link and re-run, to see what kind of
error(s) (if any) you encounter. This is the process of bugging a program, and
provides experience that will be invaluable later when you see the same kinds
of errors “for real” during your program development.

Next, you make one or more copies of the sample program and modify it in
various ways. Finally, you design, write, and test one or more new programs of
your own, based on what you have learned from dealing with the given sample
program. You may choose to check the box at the left as you complete each
activity.

O Activityl Copy hello.cpp to your workspace and give it the same name.
Study the source code in hello.cpp. Then compile, link and run the program,
and observe the output. Did that work out OK? If so, great! You’re on your
way!

O Activity 2 Make another copy of the file hello.cpp and call it hellol.cpp. Edit
hellol.cpp and make each of the changes to the program shown below, one at a
time. After each change, try to compile, link and run the program again. In the
blank space provided, record either that the program ran successfully with the
same behavior as before, or not, as the case may be, and if not, then describe
briefly the behavioral change. Or, record (in your own words) the error message
provided by the compiler if the program fails to compile after the given change
has been introduced. Don’t forget to undo the previous change each time before
making a new one, since the idea here (and in future similar situations) is first
of all to experience the effect of each change independently of any effect caused
by other changes.

A first look at C++: simple programs that only display text 11

a. Remove the line containing the compiler directive®.

b. Remove the two forward slashes (//) at the beginning of the last comment
line.

c. Remove the left brace ({) before the body of the main function.

d. Remove the right brace (}) after the body of the main function.

e. Remove the reserved word int from the function header.

f. Remove the parentheses at the end of the function header.

g. Remove the semi-colon (;) after endl.

h. Replace the value 0 by the value 5 in the return statement.

i. Remove the double quote (") at the beginning of "Hello, world!".

j- Remove the double quote (") at the end of "Hello, world!".

k. Remove the double quotes at the beginning and at the end of the string
"Hello, world!".

5Note that, as in this example, in many activities we do not always tell you to remove a
specific line by showing you exactly what line to remove, or by referring to a line number.
Instead, we often “describe” the line to be removed, in a perhaps feeble attempt to get you
to think more about what you are doing.

12 A first look at C+-: simple programs that only display text

1. Remove the line that says namespace std will be used.

m. Again remove the line that says namespace std will be used, but this time
also change the include compiler directive to appear as follows:
#include <iostream.h>
and, since this is the last change, leave the contents of the file hellol.cpp
in this state after you have tried to compile, link and run it.

O Activity 3 Make another copy of the file hello.cpp and call it hello2.cpp. Then
edit hello2.cpp and change the program so that it also prints out a second line
of text immediately after printing out the line

Hello, world!

and that second line of text must be this one:
Welcome to the world of C++!

Also, both lines of text in the output must be indented four spaces from the left
margin. Go through the edit-compile-link-run-test cycle until your program is
working correctly.

(O INSTRUCTOR CHECKPOINT 1.1 FOR EVALUATING PRIOR WORK

O Activity 4 Design and write a C++ program that displays on the screen the
following table, by displaying four lines of text. Make sure everything is posi-
tioned exactly as shown, with the word Fahrenheit beginning at the left margin.
Put your program in a file called temperature_table.cpp.

Fahrenheit I Celsius
32 | 0
212 | 100

(O INSTRUCTOR CHECKPOINT 1.2 FOR EVALUATING PRIOR WORK

O Activity 5 This activity is a follow-up to the footnote on page 4. Begin by
making another copy of hello.cpp and calling it hello3.cpp. Then change the
main function by removing the return statement. Compile, link and run the
program in hello3.cpp to see if it works as before. If it does, your compiler is
up to date, and supplies an implicit return 0; statement at the end of each
main function. If you get a warning or error, your compiler is not up to date,
and you will need to supply this return statement at the end of each program
that you write to avoid the warning message.

(O INSTRUCTOR CHECKPOINT 1.3 FOR EVALUATING PRIOR WORK

Module 2

A first look at program
development: top-down
design with step-wise
refinement

2.1 Objectives

e To appreciate the importance of the program development process.

e To learn what is meant by top-down design with step-wise refinement.
e To learn what is meant by pseudocode.

e To learn some C++ escape sequences and how to use them.

e To learn more about output formatting and programming style.

2.2 List of associated files

e name_address.cpp displays two names and addresses.

2.3 Overview

In this Module we begin our examination of the process of program design.
There are many program design methodologies, but we shall concentrate for Divide and conquer
now on one called top-down design with step-wise refinement. This is quite
a mouthful, but in reality it is conceptually quite simple and represents the
programming counterpart of a classic approach to problem solving called divide

13

14 A first look at program development:

and conquer. Applying the method well to our program development tasks
is, however, a non-trivial task, and one that we need to begin thinking about
early in the game and to continue thinking about during the remainder of our
programming careers. Hence this Module.

2.4 Sample Programs

2.4.1 name_address.cpp displays two names and
addresses and shows how to position output

1 //name_address.cpp

2 //Displays two names and addresses.

3

4 #include <iostream>

5 #include <iomanip>

6 using namespace std;

7

s int main()

o A

10 cout << "\nThis program displays two names and addresses, "

11 "each having the same format.\nHowever, the format of "

12 "each name/address pair is achieved in a different way.\n\n";

13

14 //Display a first name and address

15 cout << " Andrew Williams\n"

16 "\t123 Main Avenue\n"

17 "\tHalifax, NS\n"

18 "\tB3H 3C3\n\n";

19

20 //Display a second name and address

21 cout << setw(18) << "Angela Williams\n";

22 cout << setw(8) << "" << "123 Main Avenue\n";

23 cout << setw(8) << "" << "Halifax, NS\n";

24 cout << setw(8) << "" << "B3H 3C3\n";

25 cout << endl;

26 }
2.4.1.1 What you see for the first time in name_address.cpp
This second sample program is designed to illustrate additional aspects of C++
formatting and style. You should observe carefully the position of the text on
each line of output when the program runs, and then study the source code
equally carefully to see how this positioning is achieved. Note in particular that
the same effect in the output is not always achieved in the same way in the
source code. The new features shown in the program are:
e Use of automatic string concatenation in a cout statement

Automatic string The use of automatic string concatenation in the first two cout statements
concatenation avoids the repeated use of an insertion operator << in a long output string that

must be broken over two or more lines of code.

top-down design with stepwise refinement 15

e Use of C++ escape sequences, in particular \t and \n

The output from the program in name_address.cpp when it runs will not nec-
essarily be what you might expect just from examining the source code. In
particular, neither of the two characters in the expression \t nor the two in \n
will be printed on the screen, even though they appear in the source code as part
of a string constant. The reason for this is that each of these two-character se-
quences forms what is called an escape sequence and each has a special meaning
in C++.

The first thing to realize about these escape sequences is that even though we
write each one using two characters, conceptually each one represents a single
character.

The escape sequence \t represents a tab character, and when it is inserted
into the output stream it is interpreted as a message to “move the cursor to the
next tab stop”. The default tab stops on most output screens are set every eight
columns. If this is your current setting, then pressing the tab key repeatedly in
an editor should cause the cursor to move to columns, 9, 17, 25 and so on, and
sending a sequence of \t escape sequences from a program to the screen will
have the same effect! in the output (assuming in each case that the cursor is
initially positioned at the beginning of the line).

The escape sequence \n represents a newline character, and when it is in-
serted into the output stream it is interpreted as a message to “move the cursor
to the beginning of the next line”. Thus the use of the newline character in this
way often has the same effect as the manipulator endl.

Be very careful, however, to avoid the following misconception: that sending
either \n or endl to cout will produce a blank line in the output. This will
only be true if the cursor is already at the beginning of a line; otherwise, the
effect is just to terminate the current line of output and move the cursor to the
beginning of the next line.

e Including library iomanip, and using manipulator setw() from that library
We have already discussed the endl manipulator, which is available from the
iostream library. The iomanip library is another of the many standard C+-+
libraries. It contains many additional manipulators, including setw(), which
is used to specify the number of spaces in the output to be used for the next
output item (and only for the very next output item, which we express by saying
that the effect of setw() is not persistent). Also, by default, the item displayed
is right-justified within the given spaces, which means that the displayed item
(i.e. the output text, in our case, so far) is placed as far to the right as possible
within the spaces allotted for it in the output. The term used for the number
of spaces is the fieldwidth and the corresponding area where the text is written
is called a field.

For example, when the program displays the second name on the screen,
18 spaces are allotted. The string to be printed contains 16 characters (15

IDon’t get confused: A tab character really does cause the cursor to mowve to the next tab
stop; it does not cause the cursor to “move 8 spaces”, though that may well be the net effect.
The number of spaces actually moved depends on where the next tab stop is located.

C++ “escape sequences”

An escape sequence
represents one character.

The tab character \t
and tab stops

The newline character \n

Awoid this misconception.

setw() manipulator from
the iomanip library

Pay special attention
to the distinction
described here.

How to indent
output lines

Program readability and
user-friendliness

User interface

16 A first look at program development:

characters for the first and last names and the blank space between them, plus
one character space for the escape character \n). So, the name starts printing
in column 3 and finishes in column 18, because of the right-justification.

e The use of the output statement cout << endl; by itself

A line like this in a program often produces a blank line in the output. Note
that we say “often”, not “always”. If the cursor is already positioned at the
beginning of a line, then execution of this statement will produce a blank line in
the output. Otherwise, the statement will simply have the effect of terminating
output to the current line and ensuring that any subsequent output starts on
the following line. It is a good idea to output the endl manipulator at the end
of each program, since doing so will ensure that all remaining output (if any) is
sent to the screen before the program terminates.

e A useful technique for indenting output lines

Note first of all that the null string, i.e., the empty string (the unique string
constant containing no characters) is written using two adjacent double quotes
(""). And note how the program uses the writing of this null string in 8 spaces
to, in effect, indent an output line 8 spaces from the left margin. If 8 spaces is
the required indent then perhaps \t is a more compact and convenient choice
to achieve the same effect. But if an indent of some other “level” (i.e., some
other number of spaces) is required, this method is more versatile. Note also,
for example, that setw() could have been used to indent the second name in the
output by two spaces, and doing so would have avoided the need for counting
the number of characters in the name. There are a number of subtleties in this
paragraph that you would do well to think about, and come back to later when
you are doing the activities.

e More programming style features

There are two very important, but very different, aspects to good programming
style: program readability and program user-friendliness. The first refers to
the degree of understandability your source code has when someone is reading
your code and trying to figure out what it does and how it does what it does.
The second refers to how pleasant a user interface the program has when it runs,
in other words how easy it is for users to understand and use your program.

Note that the first thing that this sample program does when it runs is this:
It displays a description of itself. As a rule, this is a good thing for a program
to do, and, with rare exceptions, all of our sample programs from now on will
do this. In other words, having a program describe its purpose for the user of
the program is critical to having a good user interface.

The other side of the coin (the behind-the-scenes side, if you like) is the
source code of the program, which in the “real world” is seldom seen by the
program user. But those programmers (who may or may not include the original
author(s)) who must read and perhaps modify the source code (possibly long
after the program was written), are very interested in having source code that
is easy to understand.

top-down design with stepwise refinement 17

In this particular sample program, note again how we have used vertical
spacing (i.e., blank lines) to separate the logically distinct sections of the main
function, as well as horizontal spacing and vertical alignment to achieve a con-
sistent formatting style.

Our particular choices represent just one programmer’s decisions, rather
than some universally followed rule, but they are good (and typical) choices to
emulate if you want your programs to be readable. Your instructor will provide
guidance on the particular aspects of style to be followed in your case.

2.4.1.2 Additional notes and discussion on name_address.cpp

Let’s look at the program in name_address.cpp from a somewhat different per-
spective, and take this opportunity to talk for the first time about another very
important concept in programming: the notion of pseudocode for a program or
part of a program, and the fact that a computer program is an implementation
of an algorithm for solving a problem. These terms represent relatively simple
ideas, but understanding them thoroughly is critical to success in programming.

An algorithm is a finite sequence of unambiguous steps which, when they
are performed in a prescribed order, will accomplish a particular task. Many
problems have algorithms as their solutions, but not all.?

The term pseudocode, on the other hand, means short English phrases used
to describe the steps that comprise an algorithm, and formatted in such a way
as to make the instructions clearer than they would be without such formatting.

With this in mind, suppose we have the following problem: Display the name
and address of both Andrew Williams and Angela Williams on the screen.

Then we could write pseudocode for an algorithm to solve this problem as
follows:

Display the name and address of Andrew Williams
Display the name and address of Angela Williams

Now we immediately recognize the program in name_address.cpp as a solution
to this problem, or, as we also say, an implementation of the solution expressed
by the pseudocode for the algorithm which solves the problem. Notice that we
say “an” implementation, not “the” implementation, since there are many other
possible implementations. We could have written a program to do exactly the
same thing using the Pascal programming language, for example, or FORTRAN,
or BASIC. Or, for that matter, we could have taken a marker and scrawled the
names and addresses on the screen, since the problem did not specify in detail
how the information was to look on the screen, or how it was to get there.

This last remark brings up the notion of specifications, by which we mean a
written description of what a problem is, and what form its solution must take.
If the solution to the problem is to be provided by a computer program, it is
often convenient to express the specifications by describing both the nature of
the input to the program and what output the program must produce for this
given input.

2For example, no one yet seems to have discovered an algorithm for achieving world peace.

algorithm

pseudocode

A program is an
implementation of the
algorithmic solution to a
problem.

specifications

Top-level (or level 0)
pseudocode

Top-down design with
step-wise refinement

18 A first look at program development:

If some part of the problem specifies exactly how something is to be done
in the solution, then those specifications must be followed by the implementor
of the solution, i.e., the writer of the program. But sometimes the implementor
must make assumptions about how something is to be done. Even then, of
course, the description of how it is to be done must be recorded, and then this
description becomes a part of the specifications.

Note that the solution expressed in the pseudocode given above is devoid
of low-level details. This is characteristic of top-level pseudocode. Rare indeed
is the case where there are no other “levels” of pseudocode. This would only
be the case if the problem to be solved were simple enough that this “level 0”
pseudocode? could be translated directly into C++ code. Even in the very
simple case of our sample program we can “refine” our pseudocode as follows:

Display the name "Andrew Williams" starting at the left margin
Display each line of the address of Andrew Williams,

and indent each line of the address by 8 spaces
Display the name "Angela Williams" starting at the left margin
Display each line of the address of Angela Williams,

and indent each line of the address by 8 spaces

In every case, this process of step-wise refinement must continue until we have
reached the point where the steps that we are describing in pseudocode can
be translated directly into the programming language we are using to write
our programs. In our case that programming language will always be C++,
of course. We always begin at the “top” by designing the “high-level” steps of
the process that will ultimately lead to a solution. We cannot expect to have
the solution immediately, and those high-level steps will need to be refined to
more detailed steps at the next level, and so on. This approach to programming
is called top-down design with step-wise refinement, and works very well for
programs of small to moderate size. Just what “small to moderate” means is a
matter of subjective judgment, but all of our programs for the foreseeable future
will fall into this category.

2.4.1.3 Follow-up hands-on activities for name_address.cpp

This is your second set of hands-on activities dealing with a sample C++ pro-
gram, and, as we predicted they would be, they are similar to those you did
when you worked with hello.cpp in the previous Module. However, you are
not just doing exactly the same things over again. There is, of course, some
repetition, but there are many are new things to be learned and practiced as
well.

Look in particular at the first activity below. It contains a couple of steps
that you will be asked to perform many times as you proceed, though they will
henceforth be stated somewhat more succinctly. The point is this: Whenever
we ask you, in the future, to make a copy of a file and then compile, link and run
it, you should take as given the fact that before compiling, linking and running

3The top-level pseudocode is also called “level-0 pseudocode”, since programmers quite
often start counting at 0.

top-down design with stepwise refinement 19

the program you must study the source code to decide how the program will
behave when it runs, choose some test data of your own if none is given, and
only then compile, link and run the program.

In fact, we will often condense these steps to something like this:

Copy, study, test and then write pseudocode for rzz.cpp.

We will frequently ask you to write out the pseudocode, even in cases where
a program is not doing very much, so that you will become comfortable with
the relationship between pseudocode and “real” code, in preparation for the
time when using pseudocode properly will become a critical part of your pro-
gramming skills. In this particular case we have, of course, already provided the
pseudocode.

The second activity below is also typical, and we will generally condense the
instructions in future similar activities to something like this:

Copy zxx.cpp to zxxl.cpp and bug it as follows:

Keep in mind that you should not feel limited in any way by the given
activities. As you do them, other activities are sure to suggest themselves and
you must take every opportunity to pursue additional efforts to help you clarify
the concepts under discussion.

O Activityl Copy name_address.cpp to your workspace and give it the same
name. Study the source code, and predict what the output will look like when
the program runs. Then compile, link and run the program to check your
prediction. If the output was not what you predicted, go back and study the
source code again until you have reconciled the discrepancy.

O Activity 2 Make another copy of name_address. cpp and call it name_address1.cpp.
Edit name_address1.cpp and make each of the changes to the program shown be-
low, one at a time. After each change, try to compile, link and run the program
again. In the blank space provided, record either that the program ran success-
fully with the same behavior as before, or not, as the case may be, and if not,
then describe briefly the behavioral change, or describe in your own words the
error(s) discovered by the compiler if the altered program fails to compile. And
again, don’t forget to undo the previous change each time before making a new
one.

a. Remove the compiler directive which causes the iomanip library header
file to be included.

b. Remove the insertion operator << before setw(18).

20

A first look at program development:

. Remove the insertion operator << after setw(18).

. Remove all instances of the escape sequence \t.

. Remove all instances of the escape sequence \n in the first cout statement.

. Remove all instances of the backslash character \ in the first cout state-

ment.

. Change all instances of the backslash character \ to the forward slash

character / in the first cout statement.

. Change each of the three fieldwidth values from 8 to 5.

i. Change each null string ("") to a string constant containing one blank

space (",") (Note that the symbol |, is sometimes used to emphasize the
existence of a blank space, usually within a string constant, as shown
here.).

j. Change each null string to a string constant containing three blank spaces.

. Change each null string to a string constant containing eight blank spaces.

. Change each null string to a string constant containing twelve blank

spaces, and since this is the last change leave name_addressi.cpp in this
state when you have finished.

Note that in the last “bugging” activity immediately above we again
(as we did in the previous Module) explicitly ask you to leave the

top-down design with stepwise refinement 21

program in the state it was in after this particular activity. From
now on, however, we won’t explicitly ask you to do so, but you are to
continue as you have been doing at the end of the bugging activities,
i.e., leaving the program in its current state after you have inserted
and tested the last change or “bug”. The reason for this is so that
your instructor will have some evidence that you have completed the
bugging activities, should he or she wish to make this check.

O Activity 3 Make another copy of name_address.cpp and call it name_address2. cpp.

Edit name_address2.cpp so that in the output display the address lines for each
person are indented 5 spaces relative to the left margin (i.e., relative to the
beginning of the name).

O INSTRUCTOR CHECKPOINT 2.1 FOR EVALUATING PRIOR WORK

O Activity4 A code segment is a few lines of code that may be shown outside
the context of any particular program, and is generally used for illustrative
purposes. Study the following code segment:

cout << "How much\n\twood could\na woodchuck ";
cout << "chuck" << endl << "if a woodchuck\ncould\tchuck wood?";

Now predict what the output of this code will look like when it is executed, by
entering your predicted output on the lines shown below (assuming standard
default tab settings on the output screen, i.e., every 8 spaces starting in column
9). The space between each two vertical bars is to hold one character only and
the leftmost such space represents the first character position on the line.

Next, design and write a suitable program to contain this code segment, and then
test the program to see if your output prediction was correct. Call the program
file woodchuck. cpp and make sure your program exhibits all the features of good
programming style that we have discussed.

(O INSTRUCTOR CHECKPOINT 2.2 FOR EVALUATING PRIOR WORK

O Activity 5 Repeat the previous activity for the code segment shown below. This
time call the program file cities.cpp, and again be sure your program exhibits
good programming style. Before doing this exercise, it will be useful to know
the following additional information about setw(): If the specified fieldwidth
is not large enough, the width automatically expands to the size needed to hold
the number of characters being output. Among other things, this means that
setw(0) or setw(1) can be used whenever we want a fieldwidth of exactly the
right size.

Code segment

Special use of setw()

More escape sequences:

\\ and \"

22 A first look at program development:

cout << setw(12) << "Halifax" << setw(6) << "NS" << endl;
cout << setw(12) << "Saint John" << setw(6) << "NB" << endl;
cout << setw(3) << "Halifax" << setw(3) << "NS" << endl;
cout << setw(0) << "Halifax" << setw(0) << "NS" << endl;

(O INSTRUCTOR CHECKPOINT 2.3 FOR EVALUATING PRIOR WORK

O Activity 6 In order to complete this activity, you need to know a new fact about
the backslash character \ which, as you already know, is the first character in
the two-character escape sequences \t and \n.

First, note that if you wish to print out a double quote (") as part of a string
constant, then the double quote must be “escaped”, i.e., it must be preceded by
a \ in the string constant. For example, to print out a line like

He said, "How are you?"

using a single string constant, that string constant would have to appear in the
program like this:

"He said, \"How are you?\""

The reason that the double quotes enclosing the question need to be “escaped”,
of course, is so that C++ does not get confused as to which double quotes
actually enclose the string constant. Also, the backslash character itself (\)
must be “escaped” if you wish to display one in the output. That is, to have
\ appear in the output, \\ must appear in the string constant at the position
where you want the \ to appear.

So, design and write a C++ program that produces the six lines of output
shown below. The purpose of the first line of output, here as well as in the
actual output from the program, is just so that you can see where everything is
located. Call your program file escape_sequences.cpp.

123456789012345678901234567890123456789012345678901234567890
So far we have seen these four C++ "escape sequences':

\t tab character

\n newline character

\" double quote character
\\ backslash character

(O INSTRUCTOR CHECKPOINT 2.4 FOR EVALUATING PRIOR WORK

Module 3

Displaying both text and
numerical output

3.1

Objectives

To undertand how C++ handles integer and floating point (real number)
values, i.e., to learn about the C++ int and double data types.

To learn what a variable is, how to declare numerical variables (variables
of data types int and double), how to assign a value to such a variable,
how to initialize such a variable at the time of its declaration, and how to
display the value such a variable contains.

To learn how to format numerical output, and how to combine it with
text output.

3.2 List of associated files

integers_text.cpp displays output containing both integers and text.
reals_text.cpp displays output containing both real numbers and text.

errors.cpp contains both syntax and output formatting errors.

3.3 Overview

In this Module we look at programs that combine text and numerical output.
The C++ programming language provides different kinds of numbers—integers
and real numbers, for example—so we also begin our study of the available
numerical data types.

23

24 Displaying both text and numerical output

3.4 Sample Programs

3.4.1 integers_text.cpp displays output containing both
integers and text

1 //integers_text.cpp

2 //Illustrates text and integer output combined, as well as

3 //declaration of, and assignment to, an integer variable

4 //(a variable of data type "int").

5

6 #include <iostream>

7 #include <iomanip>

8 using namespace std;

9

10 int main()

11 {

12 cout << "\nThis program displays some combinations "

13 "of integer values with text.\n\n";

14

15 cout << "There are " << 7 << " days in a week." << endl;
16 cout << "There are " << 12 << " months in a year." << endl;
17

18 int numberOfDays; //Reserves a memory location

19 number0fDays = 365; //Assigns 365 to that location

20 cout << "There are (usually) " << number0OfDays

21 << " days in a year.\n\n";

22

23 cout << setw(10) << ""

24 "This line starts in column " << 11 << " .\n";

25

26 cout << "\nHere is a list of " << 4 << " items:\n"

27 << setw(12) << "computers" << setw(6) << 80 << endl
28 << setw(12) << "monitors" << setw(6) << 80 << endl
29 << setw(12) << "mice" << setw(B) << 120 << endl
30 << setw(12) << "printers" << setw(6) << 6 << endl << endl;
31

32 cout.setf(ios::left, ios::adjustfield);

33 cout << "Here is the same list of " << 4 << " items:\n"

34 << setw(12) << "computers" << setw(6) << 80 << "<<\n"
35 << setw(12) << "monitors" << setw(6) << 80 << "<<\n"
36 << setw(12) << "mice" << setw(B) << 120 << "<<\n"
37 << setw(12) << '"printers" << setw(6) << 6 << "<<\n";
38

39 cout << endl;

40 ¥

Displaying both text and numerical output 25

3.4.1.1 What you see for the first time in integers_text.cpp

e The output to the screen, via cout, of integer literal values (i.e., actual
values of integer constants, such as 7, 12, 11, and so on) in the default
output format for integer values, which is simply to display the given
integer with no spaces automatically inserted either before or after it

e The declaration of an integer variable (a variable of data type int), as
seen in the following line (and note the capitalization style):

int numberOfDays;

e An assignment to an integer variable, and the first use of the assignment
operator (=), as seen in the line:

number0fDays = 365;

e The output of a value in an integer variable (namely, the value in the int
variable number0fDays) using the default output format, as seen in the
executable statement:

cout << "There are (usually) " << numberOfDays
<< " days in a year.\n\n";

e Display of mixed integer and text output (as in the output statement
above), including “tabular” output (i.e., output in the form of a table),
which you will see when you run the program

e The use of the manipulator setw() with integer output to override the
default output format for integer values; as with string constants, setw()
when used with integers causes an output value to be right-justified in the
output field

e The use of the statement cout.setf(ios::left, ios::adjustfield)
to alter the default behavior of setw() (which is right-justification of the
output values) to left-justification of the output values?

3.4.1.2 Additional notes and discussion on integers_text.cpp

Note that even in a short program like this one, which is used only to show
how certain kinds of output look when displayed on the screen, we provide a
program description as part of the output. This is a very good habit to develop.
It is also useful, of course, to think about the corresponding pseudocode for
this program, and you are asked do so in the hands-on activities. For practice,
you must continue to think about, and write down, the pseudocode of sample
programs you encounter, and there will be lots of opportunity to do so. In the
sample programs we will continue to be careful to indicate the logical chunks
of code in the program by proper formatting, in particular the use of vertical
spacing to separate them.

INote that this is only one way to accomplish this task. You will see different approaches
to solving the same problem in different textbooks.

Integer literal values

Declaration of an
integer variable

Assignment (=)

Displaying the value
of a variable

Output of text
and integer values

Programmer-formatted
output using setw()

26 Displaying both text and numerical output

3.4.1.3 Follow-up hands-on activities for integers_text.cpp

0O Activity 1 Copy, study, test and then write pseudocode for integers_text.cpp.

O Activity 2 Copy integers_text.cpp to integers_textl.cpp and bug it as follows:

a. Remove the line that declares the integer variable numberOfDays.

b. Remove the line that assigns a value to numberOfDays.

c. Change each instance of setw(6) to setw(1).

O Activity 3 Copy integers_text.cpp t0 integers_text2.cpp and modify the copy
so that only the first of the two tables of computer equipment items is displayed,
and in the output the item names are lined up left-justified in column 4 and
the numbers are lined up left-justified in column 16. All other program output
remains the same.

O Activity 4 First, predict the output of the code shown below by entering what
you believe to be the exact output in the spaces provided following the code.
Then write a suitable program that includes this code and test your prediction.
Put the program in file called fruit.cpp.

cout << setw(10) << "apples" << setw(4) << 6;
cout << "\n oranges" << setw(2) << "" << 12 << endl;
cout << "\nTotal items " << 18;

O INSTRUCTOR CHECKPOINT 3.1 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Displaying both text and numerical output

3.4.2

27

reals_text.cpp displays output containing both real
numbers and text

//reals_text.cpp
//Illustrates real number (floating point) and text output
//combined, as well as declaration of, and assignment to, a
//real number variable (a variable of data type "double").

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

cout << "\nThis program displays some floating point values, with "
"and without text.\nStudy the output and the source code to see "

"how such values are displayed.\n\n";

cout

cout.
cout.

cout
cout
cout
cout
cout
cout

double pricel;
pricel = 2.95;
double price2 = 1099.50;

cout

cout

<<
<<
<<
<<
<<
<<
<<

2.345
2.3456
2.34567
2.345678
11111.1
111111.1
11111111

<<
<<
<<
<<
<<
<<
<<

endl
endl
endl
endl
endl
endl
endl << endl;

setf(ios::fixed, ios::floatfield);
setf (ios: :showpoint) ;

<<
<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

setw(8) <<
setw(1l) <<
setw(l) <<
setw(l) <<
setw(l) <<
endl;

setprecision(1)
setprecision(2)
setprecision(8)
setprecision(8)
setprecision(8)

"The first price is $"
setw(l) << setprecision(2) << pricel << ".\n"
"The second price is $"
setw(l) << setprecision(2) << price2 << ".\n";

endl;

<<
<<
<<
<<
<<

2.3456 << endl;

2.3456 << endl;

2.3456 << endl;

1.23456789 << endl;
123456789.123456789 << endl;

//<-- This is a "declaration".
//<-- This is an "assignment".
//<-- This is an "initialization".

3.4.2.1 What you see for the first time in reals_text.cpp

e The output, via cout, of floating point (real number) literal values (2.345,
.., 11111.1, and so on) using the default output format for real numbers

e The use of cout.setf to set the fixed and showpoint flags so that sub-
sequent floating point output will be displayed in fixed point format, and
so that the decimal point is always shown, even if the value is an integer

The two C++ statements using cout.setf that you see in this program

Real number (floating point)
literal values

Forcing fixed point
notation for real values

The setprecision()
manipulator

Persistence of
setprecision()

Variables for
real numbers

Variable initialization
vs. variable assignment

Mized output of text and real
(floating point) numbers

28 Displaying both text and numerical output

have the effect of causing all subsequent floating point values to be dis-
played using fixed point notation (see discussion in the following subsec-
tion). Unless you are prepared to undertake a more detailed study of C++
formatting flags (not necessary at this point, certainly), it’s probably best
just to think of these statements as “magic lines” which you insert in
your program at some point (perhaps the beginning) before you wish to
start displaying real values using fixed point notation. After these lines
have executed, the setprecision() manipulator determines the number
of digits to appear after the decimal in the numbers displayed.

e The use of the setw() manipulator (whose purpose is the same as be-
fore) and the setprecision() manipulator with floating point output to
indicate the number of digits to be placed after the decimal point in the
output

We should make the point here that, unlike the effect of setw(), which
only applies to the immediately following item in the output stream, the
effect of setprecision() is persistent. That is, any given instance of
setprecision() applies to all subsequently displayed real numbers, until
another setprecision() is inserted into the output stream.

e The declaration of, and assignment of a value to, a floating point (or real)
variable (a variable of data type double)

e The initialization of a variable, i.e., giving a variable a value at the same
time that it is declared (Note that initialization should not be confused
with assignment; initialization has the same net effect as a declaration
followed by an assignment, but is conceptually distinct.)

e The output of mixed floating point numbers and text, including numbers
that represent dollars and cents, and numbers in scientific notation (see
below)

3.4.2.2 Additional notes and discussion on reals_text.cpp

There are many other manipulators and many other ways of using setf () to
set flags that indicate alternate ways of formatting output. Some of these you
may encounter later on, but for the moment the ones you see here are all that
you need.

You should be familiar with scientific notation from your previous experience
with mathematics, but we shall give you a quick reminder here, mainly to point
out the distinction between the two terms fixed point notation and scientific
notation for real (floating point) numbers.

Our “usual” way of writing numbers has the more formal name of fixed
point notation. So, for example we might write a number like 123.45 in the
“usual” way (the fixed point notation way), while the same number written in
the version of scientific notation used by C++ would appear as 1.2345e02.

Displaying both text and numerical output 29

Scientific notation always has one digit to the left of the decimal point and
(usually) a default maximum of five digits to the right of the decimal point
in C++. The two digits following the e are the power of 10 (the exponent of
10) which must be multiplied by the value preceding the e to give the actual
number. Check your local documentation for any additional information you
need.

3.4.2.3 Follow-up hands-on activities for reals_text.cpp

O Activity 1 Copy, study, test and then write pseudocode for reals_text.cpp.

O Activity 2 Copy reals_text.cpp to reals_textl.cpp and bug it as follows:

a. Insert a semi-colon at the end of line 16.

b. In the second cout statement, remove all instances of << endl except the
last.

c. Remove the first cout.setf statement.

d. Remove the second cout.setf statement.

e. Remove both cout.setf statements.

O Activity 3 Copy reals_text.cpp to reals_text2.cpp and modify the copy so
that in the output the first seven numbers displayed are all on one line, with
two spaces separating each two numbers, and the next five numbers are also on
one line, with the first number starting at the left margin, two spaces between
each two numbers, and each number having five places after the decimal.

O Activity 4 Design and write a C++ program that produces the output shown
below, and in which every numerical value is output as a literal value, not as
part of a string constant. Both lines must be indented four spaces from the left
margin in the output, and each line must be indented using a different method.
Put your program in a file called costs.cpp.

If 1 item costs $3.95, then 12 items will cost $47.40.
I need six (6) programmers for one-and-a-half (1.5) months.

(O INSTRUCTOR CHECKPOINT 3.2 FOR EVALUATING PRIOR WORK

Remember that you want to
undo this before moving on,
so try to find a way that’s
easily undone.

© 0 N U R W N =

N
A W N = O

15
16
17
18
19
20
21
22

30 Displaying both text and numerical output

3.4.3 errors.cpp contains both syntax errors and output
formatting errors for you to fix

//errors.cpp
//Illustrates some C++ syntax and output formatting errors.

#include <iostream>

int main()

{
cout << "This is "
cout << "still the first "
cout << "line of output.\n";

cout << "And this "
<< "is the second "
<< "line of output.\n";

cout << "First value\n";
<< "is " KK 6

cout << "Second value
<< "ig " << 2.35;

n

cout << endl;

3.4.3.1 What you see for the first time in errors.cpp

e A C++ “program” that does not compile, because it contains deliberately-
inserted syntax errors (so you could say that it really isn’t a program, yet)

e C++ code containing deliberately-inserted formatting errors that you
must discover and correct (along with the syntax errors alluded to above)

3.4.3.2 Additional notes and discussion on errors.cpp

You are by now familiar with the process of “bugging” the sample programs,
but this is your first encounter with a sample “program” that is not actually
working to begin with (a “pre-bugged” program, you might say).

Now is not a bad time to remind you that the better you become at spotting
errors in source code on the page or on the screen, the more time you will save
during program development. We must all strive, of course, to produce code
without errors in the first place, but knowing the impossibility of achieving
this goal in the real world means that we also need to continually sharpen our
bug-detecting skills as well.

Displaying both text and numerical output 31

3.4.3.3 Follow-up hands-on activities for errors.cpp

O Activity 1 Copy errors.cpp to no_errors.cpp and study the code. Try to find
and correct all of the syntax and formatting errors before attempting to compile
the program. An important skill to develop is the ability to read C++ code
and spot errors of various kinds. Being able to do so can save you enormous
amounts of time in the development cycle, when you are doing this for your
own code. The output from no_errors.cpp, when you are finished, is supposed
to look like this:

This is still the first line of output.
And this is the second line of output.

First value is 6.
Second value is 2.35.

So, compile, link, run and test the program until its performance is consistent
with its name.

O INSTRUCTOR CHECKPOINT 3.3 FOR EVALUATING PRIOR WORK

32

Displaying both text and numerical output

Module 4

Reading numbers and
characters from the
keyboard

4.1

Objectives

To learn about the char data type, which is also considered to be one of
the C++ integral data types.

To understand how cin from the iostream library is used to read both
numerical values and character values from the keyboard, and store them
in variables of the appropriate data type.

To understand what whitespace is.

To understand how and why whitespace is (usually) used to separate data
values in an input stream.

To understand how whitespace itself can be read in, if necessary, using
cin.get ().

To understand how you can arrange for a program to ignore certain parts
of the data in an input stream by using cin.ignore().

To understand the importance of prompts to inform the user of what input
is expected when a program is reading data from the keyboard.

To understand how to incorporate user prompts into your programs.

To understand why you should, and how you can, make your program
pause and wait for a user to press the Enter key before continuing.

33

Numerical values can be in-
teger or real (floating point).

34 Reading numbers and characters from the keyboard

e To become aware of some of the many pitfalls that lie in wait for the
programmer (as well as the user!') when dealing with program input.

4.2 List of associated files

e simple_io.cpp illustrates simple I/O (as input/output is often abbreviated)
of integer, real and character values, and includes a prompt to the user
for the input of each value.

e pausing.cpp illustrates how to create a pause in a program to permit the
user to read descriptive material, instructions or displayed output.

e whitespace_ignore.cpp illustrates how whitespace characters in the input
stream can be read, and how “unwanted” characters in the input stream
can be ignored.

e test_io.cpp provides further practice with keyboard input.

4.3 Overview

Every program seen prior to this Module has displayed output on the screen,
but none has required input, either from the keyboard or from any other source.
In this Module you will deal with programs that read input from the keyboard.
Each input value will be either a single number (an integer or a real) or a single
character, since we do not know enough at this stage to have our programs read
in string? input.

4.4 Sample Programs

The sample programs of this Module will show you how a C++ program reads
input values from the keyboard into a program and stores them in variables.
This is a very straightforward process in the simplest cases, particularly if only
one value is being read at a time.

On the other hand, as soon as the input consists of multiple values, possibly
of different data types, separated by whitespace (or not), the situation becomes
more complicated and various subtleties start to intrude. This is particularly
true if the whitespace itself must be read or accounted for explicitly.

1We shall generally use the term programmer to refer, not surprisingly, to the person who
writes a program, while the term user will refer to the person who runs the finshed program
and “uses” it to do whatever it does. Of course, the programmer must from time to time take
on the role of user as well, at least during program development and testing.

2Remember that a string is a sequence of characters considered as a single entity. Output
of strings, or at least string constants, is easy (we have been doing it all along), but input to
string variables (variables having the string data type) is another story, to come later.

N

© w N o o«

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40

Reading numbers and characters from the keyboard 35

Experience shows that input/output is one of the more troubling topics for
beginning C+-+ programmers to master. Take advantage of the opportunities
provided by this Module to start your journey down the road to mastery.

4.4.1 simple_io.cpp illustrates how to prompt a user for
input and how to input and output simple values

//simple_io.cpp
//I1llustrates output of user prompts, with corresponding input
//and output of integer, real and character values.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program illustrates the input and output of "
"integer (int), real (double),\nand character (char) values. "
"In each case, note the cursor position when the\nprogram is "
"waiting for input.\n";

//Input, and then output, a single integer value.

//Value is entered immediately following the prompt, with a single
//space between the end of the prompt and the start of the value.
int somelnteger;

cout << "\nEnter an integer value here: ";

cin >> somelnteger;

cout << "The integer you entered was " << somelnteger << ".\n";

//Input, and then output, a single floating point (real) value.
//Value is entered at the start of the line following the prompt.
double someReal;

cout << "\nEnter a real number value here:\n";

cin >> someReal;

cout << "The real number you entered was " << someReal << ".\n";

//Input, and then output, two character values. Tab characters
//are used to line up the entry positions of the two input values.
char firstChar, secondChar;

cout << "\nEnter a character value here:\t\t";

cin >> firstChar;

cout << "Enter another character value here:\t";

cin >> secondChar;

cout << "The first character entered was " << firstChar << ".\n";
cout << "The second character entered was " << secondChar << ".\n";
cout << endl;

Reading values
from the keyboard

Declaration of a
character variable

cin for input

User prompts

Positioning the cursor

Variables declared close
to location where used

How cin works

Wrong input does not
necessarily cause a
program to “crash”.

36 Reading numbers and characters from the keyboard

4.4.1.1 What you see for the first time in simple_io.cpp

e A second method of giving a value to a variable, namely “reading” a value
from the keyboard into the variable in memory (in addition to the method
of “assigning” a value, which we saw earlier)

e The declaration of a variable of char data type

e The use of cin from the iostream library to “input” (i.e., to “read”)
values of different data types (int, double, char) from the keyboard, via
the extraction operator >>, into variables of the appropriate data type.

e The use of a prompt to tell the user what kind of data values the program
is expecting for input

e The declaration of more than one variable in a single declaration statement
(firstChar and secondChar)

e Techniques for positioning the cursor on different lines, or at varying po-
sitions on the input line, before data entry

e The declaration of variables at different places inside the main function
(with the rule of thumb being to declare each variable as close as possible
to where it is first used)

4.4.1.2 Additional notes and discussion on simple_io.cpp

It is very important to understand the default behavior of cin whenever your
program is attempting to read either a number (integer or real), or a charac-
ter. First, leading whitespace is skipped. (The term whitespace means blank
spaces, tabs, or newline characters.) Then characters are read as long as those
characters continue to make sense as part of a single value of the type that it’s
looking for. When reading stops, the next character in the input stream does
not make sense as part of that value, and that character will be the first one
read the next time any value is read from the input stream. Often a whitespace
character will be the one that stops the reading, but not always.

If you understood the previous description, then congratulations and you
know how cin works. If you didn’t, then you may or may not know how
it works, but careful attention to detail when you study each of the sample
programs in this Module will help to fill any gaps in your understanding.

It is also very important to know that wrong input does not usually cause
a C4++ program to crash®. It simply causes the input stream to “shut down”
and refuse to accept any more input (perhaps only for the time being, as you
will see later). The remainder of the program will continue to execute, but
perhaps without critical data that hasn’t been read in. So, clearly, bad input is
a potentially serious problem.

3 A program is usually said to crash when it emits one or more error messages to the screen
display, stops working, and returns control to the operating system

Reading numbers and characters from the keyboard 37

Note that when this program runs, the cursor is at a different positions on
the input line for different values input. Study the source code to see how this
is done. The question of cursor positioning for input is a matter of individual
taste and programming style.

4.4.1.3 Follow-up hands-on activities for simple_io.cpp

O Activity 1 Copy, study, test and then write pseudocode for simple_io.cpp.

O Activity 2 Copy simple_io.cpp to simple_iol.cpp and bug it as follows:

a. Replace the extraction operator in the statement cin >> somelInteger;
with an insertion operator.

b. Remove the statement that reads in a real number.

c. Initialize firstChar to the value ‘a’ and secondChar to the value ‘b’.

O Activity 3 Copy simple_io.cpp to simple_io2.cpp and modify the copy so that
when the program runs, every input value is entered on the line below the line
containing the prompt for that value.

O Activity 4 Copy simple_io.cpp to simple_io3.cpp and modify the copy so that
when the program runs, every input value is entered on the same line as the
line containing the prompt for that value, with one space between the end of
the prompt and the beginning of the entered value.

O Activity 5 Copy simple_io.cpp to simple_io4.cpp and modify the copy so that
when the program runs, every input value is entered on the same line as the
line containing the prompt for that value, and all values are input beginning in
column 41. (Assume that your screen is set up for “normal” tab spacing, with
a tab stop every 8 columns beginning in column 9.)

O Activity 6 Copy simple_io.cpp to simple_io5.cpp and remove from the copied
program all code that displays the program description and the prompts when
the program runs. Now compile, link and run the program. With luck, you
will need no further convincing of the need, in the output, for both a program
description and appropriate prompts in every program you write.

(O INSTRUCTOR CHECKPOINT 4.1 FOR EVALUATING PRIOR WORK

© 0 N O U oA W N e

BB A R A B R W W W W W W W W W WNNNNNNDNNNNE B HE s R e e e e e
S A N = O © K90 0 A N~ O© BN 0E WN = O’ N0 W N~ O

38 Reading numbers and characters from the keyboard

4.4.2 pausing.cpp illustrates how to make a program
pause and wait for the user to press the Enter key
before continuing

//pausing.cpp
//I1llustrates how to make a program pause and wait for the user to press
//Enter before continuing, an often useful "user interface" feature.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program illustrates how to create a \"pause\" in "
"the output of a program,\nso that a user may read the preceding
"output before continuing. The user then\ncontinues by pressing "
"the Enter key.\n";

//The following code causes the program to pause and wait

//for the user to press the Enter key before continuing.

//BUT ONLY IF INPUT STREAM cin IS EMPTY WHEN THE CODE EXECUTES
cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’); //1

//The following three code sections are identical to those in
//simple_io.cpp, except for the addition of three instances of
//cin.ignore(80, ’\n’);

int somelnteger;

cout << "\nEnter an integer value here: ";

cin >> someInteger; cin.ignore(80, ’\n’); //2

//Study carefully the above useful C++ "idiom" for reading
//an integer and ignoring whatever else in on the same line.
cout << "The integer you entered was " << somelnteger << ".\n";

double someReal;

cout << "\nEnter a real number value here:\n";

cin >> someReal; cin.ignore(80, ’\n’); //3

cout << "The real number you entered was " << someReal << ".\n";

char firstChar, secondChar;

cout << "\nEnter a character value here: \t\t";

cin >> firstChar; cin.ignore(80, ’\n’); //4

cout << "Enter another character value here: \t";

cin >> secondChar; cin.ignore(80, ’\n’); //5

cout << "The first character entered was " << firstChar << ".\n";
cout << "The second character entered was " << secondChar << ".\n";
cout << endl;

//A pause at the end of the program
cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’); //6

Reading numbers and characters from the keyboard 39

4.4.2.1 What you see for the first time in pausing.cpp

e A technique for causing a program to pause and wait for the user to press
the Enter key before continuing (to let the user read something on the
screen, for example)

e The use of the statement cin.ignore(80, ’\n’); to ignore, essentially,
“anything left on the current line of input”, or, equivalently, to “clear”
the input line

4.4.2.2 Additional notes and discussion on pausing.cpp

There are many differernt potential uses for a call to cin.ignore(), with dif-
ferent values of the parameters, and we will come back to this question when we
look at the sample program of the following section. In this sample program,
however, we make very specific use of a call with very specific parameter values:
cin.ignore(80, ’\n’). The first parameter is 80, which is the maximum num-
ber of characters from the input stream that might be ignored by this call; the
second parameter is >\n’, which will be the last character ignored if it appears
among the next 80 characters. Because whenever the user presses the Enter key,
a newline character (>\n’) is entered into the input stream cin, the net effect
of this combination of parameters is this: Whenever cin.ignore(80, ’\n’)
is called, everything upto and including the next >\n’ will be ignored; or, the
next 80 characters will be ignored, whichever comes first. Since users do not nor-
mally enter 80 characters or more before pressing the Enter key, what normally
happens is the first option, and this statement causes the input stream to be
“cleared” of all remaining characters, including the newline. This is extremely
important in the context of causing a program to “pause”, since the code which
this program uses to do the pausing relies upon the input stream being empty
when that code executes.

You may wish to place the call to cin.iginore(80, ’\n’) on the same line
as the input statement with which it is associated, to emphasize that association.
This, of course, is a mild departure from the usual style rule of having only one
executable statement per line of code. When programmers use a particular
construct like this consistently in a given context, the particular construct is
sometimes referred to as an idiom®.

Also, it is not a bad idea to “officially” terminate any prompt which asks for
a value to be input on the same line as the prompt itself. We would do this by
placing a cout << endl; statement after the cin that reads the value. Doing
this for the first input value in pausing.cpp would mean that our “idiom” in
that case would be revised to appear as follows:
cin >> somelnteger; cin.ignore(80, ’\n’); cout << endl; //2

This is often not necessary, but perhaps conceptually we should be happier
using the idiom in this way, since doing so means we have dealt completely with
both input and output in the current (local) context. That is,

4Not to be confused with idiot, which is something else altogether, though some would say
the two are not entirely unrelated.

Pausing a program

Clearing the input line

cin.ignore() “diom”

Problem due to extra
newline character in the
mput stream

40 Reading numbers and characters from the keyboard

e We have finished reading the data value.

e We have cleared the rest of the input line (officially ignored any remaining
data on the input line containing the value that we just read).

e We have terminated the preceding output line containing the prompt.

If several values are to be input, involving several prompts, we may prefer
to wait till all values have been read before performing the “ignore action” and
sending the terminating endl.

Most of the time, the only problem you have to watch out for is that of
having an extra newline character left over in the input stream when, at some
later time, you begin to read a character. This is a subtle problem, and many
a novice programmer has come to grief as a result of missing this point. Using
the “complete” form of the above idiom consistently will avoid the problem, but
will also make your code somewhat more cluttered than it needs to be. Study
the sample programs as you proceed. We do not always use the idiom, and
sometimes you will see the idiom where it isn’t needed, so it’s a useful exercise
to stop and ask yourself whenever you see it whether it is really necessary. A
certain amount of experimentation will prove quite helpful.

4.4.2.3 Follow-up hands-on activities for pausing.cpp

O Activity 1 Copy, study, test and then write pseudocode for pausing. cpp.
O Activity 2 Copy pausing.cpp to pausingl.cpp and bug it as follows:
a. Run the program as is, and each time the program pauses and asks you

to press Enter to continue, enter these characters before pressing Enter:
abcdef.

b. Repeat the previous exercise, but before doing so, replace each instance
of 80 in the source code with the value 4, and produce a revised executable.

O Activity 3 Copy pausing.cpp to pausing2.cpp. Modify the program so that it
reads in and displays a second integer (two integers in all) and a second real
number (two real numbers in all). It must display both integers in the place
where it now displays one, and then pause. And it must exhibit analogous
display and pausing behavior for the two real numbers as well.

(O INSTRUCTOR CHECKPOINT 4.2 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Reading numbers and characters from the keyboard

4.4.3

whitespace_ignore.cpp illustrates how to read
whitespace and how to ignore unwanted input

//whitespace_ignore.cpp
//Illustrates more C++ input, this time including cin.get() to read
//whitespace and cin.ignore() to skip over "unwanted" input.

#include <iostream>
using namespace std;

int main()

{

cout << "\nThis program is a further lesson on input, illustrating "

int

"both how to read\nwhitespace, and how to skip over (ignore) "
"unwanted values in the input\nstream. Read the instructions "
"for input carefully, enter values carefully\naccording to those "
"instructions, and then study both the resulting output\nand the "
"source code equally carefully to reconcile them with the given "
"input.\n\nHere are the input instructions:\n"

"1. Enter any amount of whitespace, followed by an integer.\n"

"2. Enter anything you like on the rest of the line, "

"then press Enter.\n"

"3. Enter any amount of whitespace, followed by an integer.\n"

"4. Now enter up to 20 characters. If fewer than 20 are\n"

" entered, make the last one an exclamation mark (!).\n"

"5. Enter any amount of whitespace, followed by an integer.\n"

"6. Finally, enter at least three more characters, "

"then press Enter.\n\n"

"Start entering data on the following line:\n";

i1, i2, i3;

char c1l, c2, c3;

cin
cin
cin
cin
cin

cin.

>> il; cin.ignore(80, ’\n’);
>> i2; cin.ignore(20, ’!’);
>> i3;
>> cl;

.get(c2); //This statement will read a whitespace character.

get(c3); //And so will this one.

cout << "\nHere are the 3 integers and 3 characters read in:\n"

<< "il: " << il << "\ni2: " << i2 << "\ni3: " << i3 << "\n"
<< "cl: " << ¢l << "<<\n"
<< "c2: " << c2 << "<<\n"
<< "e3: " << 3 << "<<\n";

cout << endl;

41

42 Reading numbers and characters from the keyboard

4.4.3.1 What you see for the first time in whitespace_ignore.cpp

cin.get () e The use of cin.get() to read in a single whitespace character (blank
space, tab, or newline character)

cin.ignore() e The use of cin.ignore() to ignore certain characters in the input stream

For example, the statement cin.ignore(12, ’a’); causes either the next
12 characters in the input stream to be ignored, or all characters up to
and including the first occurrence of the character ‘a’ if it appears before
12 characters have been counted.

4.4.3.2 Additional notes and discussion on whitespace_ignore.cpp

Be prepared to spend a little extra time studying and experimenting with this
program, even beyond the hands-on activities given below. If you have difficulty
predicting the output from the given input data sets, continue experimenting
by making up your own data sets and predicting the output from them.

You might well ask, “When would I actually use a call to cin.ignore() like
the one above?” In fact, probably not very often when entering data from the
keyboard. But in the real world, most program data comes from files, and it
may well be the case that only some of the input in a file is actually of interest.
In that situation, because the ignore () function works with files of text as well,
its use may be very helpful, since it is better to simply ignore input, rather than
having to go to the trouble of reading it in and then ignoring it.

So, we can become familiar with the ignore() function in the context of
keyboard input, and be ready to use it in a precisely analogous way, if required,
when reading data from files of text. And, as you can see from studying the
sample program pausing.cpp in Module 3, a particular form of this function
(cin.ignore(80, ’\n’)) is very useful when we want to have a program pause
during its display of output.

4.4.3.3 Follow-up hands-on activities for whitespace_ignore.cpp

O Activity 1 Copy, study, test and write pseudocode for whitespace_ignore.cpp.
Use at least the data sets shown below when testing the program, and enter
your predicted output from each data set in the spaces following the data before
running the program. These data sets are meant to be entered as shown, with
the Enter key pressed at the end of each line of input.

a. First data set:

123
456!789a b

il = i2 = i3 = cl = __ c2 = __ c3 = __

Reading numbers and characters from the keyboard 43

b. Second data set:

12Buckle my shoe!
34Shut the door!56And lock it!

il = i2 = i3 = cl = c2 = c3 J—
c. Third data set:

6.358 This of course is a real number, is it not?
4. Most of the time, 26. is too.

il = i2 = i3 = cl = __ c2 = __ c3 =
d. Fourth data set:

1

213!

And this is the third line of data!

il=___ i2=___ i3=___ cl1l=_ c2=_ c3=__

O Activity 2 Copy whitespace_ignore.cpp to whitespace_ignorel.cpp and bug it
as follows:

a. Replace the statement cin.get(c2); with cin.get(i2) ;.

b. Replace (80, ’\n’) with (80, ’/n’) in line 31.

c. Replace (20, ’!’) with (20, 6) in line 32.

(O INSTRUCTOR CHECKPOINT 4.3 FOR EVALUATING PRIOR WORK

© 0 N e U R W N =

25

44 Reading numbers and characters from the keyboard

4.4.4 test_io.cpp provides further practice with user
input from the keyboard

//test_io.cpp
//Illustrates more integer, character and real input,
//including input of whitespace characters.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program is designed to help you experiment with "

"C++ input. When entering\ndata, use varying amounts and kinds
"of whitespace to separate values, just to\nsee what happens.\n\n"
"Here are the input instructions:\n"
"1. Enter three integers, followed by three characters, "
"then three real numbers.\n"
"2. Now press the Enter key.\n"
"3. Next, once again, enter another three integers, followed "
"by another three\n characters, and finally another three "
"real numbers.\n"
"4. Finally, press the Enter key once more.\n\n"
"Start entering input on the following line:\n";

int i1, i2, i3, i4, i5, i6;
char c1, c2, c3, c4, c5, c6;
double ri1, r2, r3, r4, r5, r6;

cin >> il >> i2 >> i3;
cin >> cl1 >> c2 >> c3;
cin >> rl >> r2 > r3;
cin >> i4 >> ib >> i6;
cin.get(c4);
cin.get(ch);
cin.get(c6);
cin >> r4 >> r5 >> r6;

cout << "\nHere are the eighteen values read in, with a "
"\"<<\" marker\nat the end of each output line:\n";
cout << "il: " << i1l
<< "\t\t\ti2: " << i2
<< "M\t\t\ti3: " << i3 << "<«";

cout << "\ncl: " << cl << "<<"

<< "\nc2: " << c2 << "<

<< "\nc3: " << c¢3 << "<<\n";
cout << "ri: " << r1 << "\t\tr2: "

<< r2 << "\t\tr3: "
<< r3 << "<<\n";
cout << "i4: " << i4
<< "\t\t\ti5: " << ib
<< "\t\t\ti6: " << i6 << "<<";

cout << "\mc4: " << ¢4 << "<<"

<< "\ncb5: " << cb << "<<"

<< "\nc6: " << c6 << "<<\n";
cout << "r4: " << r4

<< "\t\t\tr5: " << r5

<< "\t\t\tr6: " << r6 << "<<\n";

cout << endl;

Reading numbers and characters from the keyboard 45

4.4.4.1 What you see for the first time in test_io.cpp

Actually, there is not much new in this program. You’ve seen it all before in
one program or another, except for the reading in of several values with a single
cin statement, so note carefully the syntax for doing this.

4.4.4.2 Additional notes and discussion on test_io.cpp

This program is supplied solely for the purpose of giving you lots of additional
practice with keyboard input, and you should take full advantage of it to get
that practice. In particular, feel free to add to, delete, or change the order of,
the various input statements, and make up your own additional test data sets.

4.4.4.3 Follow-up hands-on activities for test_io.cpp

O Activity 1 Copy, study, test and write pseudocode for test_io.cpp. Use at
least the data sets shown below as input data when testing the program, but
make up some of your own as well. For each input data set, enter your predicted
output values in the spaces following the given input data set before running
the program on that data set.

a. First data set:

123
abec
4.5 6.7 8.9

-1-2-3-4-5-6-7

it=___ = i2=___ i3 =
ctl=___ = c2=____ 3=
ri=__ rg = ___ r3 =
id=__ i5 = i6 =
cd = c6=__ c6 =
rd=__ rb=___ 16 =

b. Second data set:
6-2+3.6%5.2e-1+4.02-3.6E+2-9-8-7

/\.2-3+0

it=___ = i2=___ i3 =
cl=____ c2=______ 3=
rl=__ r2=___ 3=
i4=___ = ib=____ i6 =
cd = c6=___ c6 =

rd = rb=__ ré6 =

46 Reading numbers and characters from the keyboard

c. Third data set:

2

1-3.
+6.54E1-.1.7

+6 54 1-.1.7.6+5

it=__ i2=____ i3 =
cl=__ c2=___ c3 =
rt=____ r2=_____ 3=
i4 = _ ib=____ = i6 =
cd=_____ cb=____ c6-=
rd = r6 = r6 =

O Activity 2 Make a copy of test_io.cpp called test_iol.cpp and modify the copy
so that it outputs the eighteen values in two groups of nine each, with a pause
in between and a request that the user press Enter to see the other nine. Think
carefully about this, and try to get it right on the first try, with the minimal
number of changes to the original program. If you do, it should increase your
confidence in your understanding of the relevant details.

(O INSTRUCTOR CHECKPOINT 4.4 FOR EVALUATING PRIOR WORK

Module 5

Simple file input and output

5.1 Objectives

e To understand how to use the fstream library when you need to perform
file input and/or output.

e To appreciate the strong parallels between textfile I/O (input from, and
output to, a file of human-readable characters) and standard I/O (which is
also called console I/0O, and refers to input from the keyboard and output
to a screen which scrolls up a line at a time until the top line “disappears”
off the top of the screen).

5.2 List of associated files

e textfile io.cpp inputs data from a textfile and outputs data to a textfile.

e textfile io.inl, textfile io.in2 and textfile io.in3 are sample input
data files for the program in textfile_io.cpp.

5.3 Overview

Every program seen prior to this Module sent output to the screen, and read
input, if at all, from the keyboard. In this Module we briefly introduce the idea
of a program writing output to a textfile and/or reading input from a textfile.
This is clearly an essential requirement if there are large amounts of data.

5.4 Sample Programs

The one sample program in this Module should be compared closely with the
sample program test_io.cpp from the previous Module, after which you should
agree with the following statement: One of the nice things about C++ is the
ease with which one can go from standard input/output (keyboard and screen)
to textfile input/output. A7

48 Simple file input and output

5.4.1 textfile_io.cpp illustrates how to read input from a
textfile and write output to a textfile

1 //textfile_io.cpp

2 //Illustrates C++ input from a file and output to a file.

3

4 #include <iostream>

5 #include <fstream>

6 using namespace std;

7

8 int main()

o o

10 cout << "\nThis program reads data from a textfile called "

11 "\"in_data\", and writes it out\nto another textfile called "
12 "\"out_data\". The file in_data must be present.\n";

13 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);
14

15 ifstream inFile; //Declare a file variable for input
16 ofstream outFile; //Declare a file variable for output
17 inFile.open("in_data"); //Connect "inFile" to a physical file
18 outFile.open("out_data"); //Connect "outFile" to a physical file
19

20 int i1, i2, i3, i4, ib, i6;

21 char c1, c2, c3, c4, c5, c6;

22 double r1, r2, r3, r4, r5, r6;

23

24 inFile >> i1 >> i2 >> i3;

25 inFile >> c1 >> c2 >> c3;

26 inFile >> r1l >> r2 >> r3;

27 inFile >> i4 >> ib >> i6;

28 inFile.get(c4);

29 inFile.get(c5);

30 inFile.get(c6);

31 inFile >> r4 >> r5 >> r6;

32 inFile.close(); //Close the input file

33

34 outFile << "\nHere are the eighteen values read in, with a "

35 "\"<<\" marker\nat the end of each output line:\n";

36 outFile << "il: " << it

37 << "M\t\t\ti2: " << i2

38 << "\t\t\ti3: " << i3 << "<L";

39 outFile << "\ncl: " << cl << "<<"

40 << "\nc2: " << c2 << "<<"

41 << "\nc3: " << c3 << "<<\n";

42 outFile << "ril: " << r1 << "\t\tr2: "

43 << r2 << "\t\tr3: "

44 << r3 << "<<\n";

45 outFile << "i4: " << i4

46 << "\t\t\tib: " << ib5

a7 << "\t\t\ti6: " << i6 << "<<";

48 outFile << "\nc4d: " << c4 << "<"

49 << "\ncb5: " << cb << "<<"

50 << "\nc6: " << c6 << "<<\n";

51 outFile << "r4: " << r4

52 << "\t\t\tr5: " << rb

53 << "\t\t\tr6: " << r6 << "<<\n";

54 outFile << endl;

55 outFile.close(); //Close the output file

56

57 cout << "\nIf all went well, the input file has been read, and "
58 "the output file has been\nwritten. However, you should, of "
59 "course, check to be sure.\n";

60 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

Simple file input and output

49

5.4.1.1 What you see for the first time in textfile_io.cpp

The reading of data values from an input textfile and the writing of values
to an output textfile

The inclusion of the fstream library, for access to the input filetype
ifstream, and to the output filetype of stream

The declaration of an input file variable (inFile) of data type ifstream
and an output file variable (outFile) of data type ofstream

Technically, inFile is a class object of class type ifstream and similarly
outFile is a class object of class type ofstream, but thinking of objects
as variables and classes as data types for the moment will do no harm,
and possibly much good.

The use of program_filename.open("operating_system_filename") to
associate the name used by a program for a data file with the name used
by the operating system for the same file

The use of program filenames like inFile and outFile in a manner com-
pletely analogous to the way in which cin and cout are used to read input
and display output, respectively

The use of program_filename.close() to “close” a file when the program
is no longer using it

5.4.1.2 Additional notes and discussion on textfile_io.cpp

You should be impressed, and thankful to Mr. Stroustrup?!, for the way in which
C++ input from textfiles and output to textfiles parallels the way C++ inputs
data from the keyboard and outputs it to the screen. If you look for a moment
at the program in textfile_io.cpp and concentrate just on the statements that
begin with inFile and outFile, you will note that these are precisely analogous
to the way the corresponding cin and cout statements would look if we were
getting input from the keyboard and sending output to the screen.

Thus, the only additional work we have to do to use textfiles for input or
output consists of the following four steps:

Include the fstream header file.
Declare the necessary file variable(s).
Connect each file variable to a physical file.

“Close” each file when we are finished with it.

IBjarne Stroustrup, who designed the C++4 programming language at Bell Labs in the
early-to-mid-1980’s, and has continued to play a leading role in its development ever since.

Reading from, and
writing to, textfiles

fstream [ibrary

Declaration of file types
for input and output

Connecting a program
filename with the
physical filename

Strong parallel with

use of cin and cout

Closing a file

Setting up a file
for input or output

A best practice

Screen image and
keyboard image

Program name for a file
may be different from the
actual name of the physical

file on disk

50 Simple file input and output

Note that the last three steps are always performed automatically for cin
and cout whenever the iostream header file is included in a program.

When we read input from a file, there is of course no need for prompts.
However, this need is replaced by another: namely, the need to know exactly
what the format of the input data in the file is, so that the program knows what
to expect when it attempts to read data from the file.

It is quite useful to think of the input from a textfile as a keyboard image
and the output to a textfile as a screen image. What we mean by these terms
is this: Thinking of the input from a file as a “keyboard image” means that if
the input data in an input data file appears in exactly the same format as it
would have if you typed it in from the keyboard, then it will be read in exactly
the same way by the program as if you were entering it from the keyboard and
the program were reading it with cin. Similarly, thinking of the output data
sent to an output data file as a “screen image” means that if the output data
file is displayed on the screen as a textfile the display will look exactly as if the
program had itself sent the data directly to the screen with cout.

5.4.1.3 Connecting program filenames and actual filenames on your
system

If a C++ program is to read from a file, or write to a file, then it needs a name
for the file in order to refer to the file. For example, in textfile_io.cpp the
program uses the name inFile (a programmer-chosen identifier) to refer to the
file from which it reads input. Note that this is not (or at least doesn’t have to
be) the actual name of the file as far as the operating system is concerned (i.e.,
you might not see anything called inFile if you looked at a list of the files in
your working directory).

So, what is the actual name of the data file? It’s important to note that
you can’t deduce the answer to this question by looking at the program in
textfile io.cpp. It may be in_data, the same name that appears within the
double quotes in the inFile.open statement, but it may just as well not be.
What s true, conceptually, however, is that in_data is the name passed by the
C++ program to the operating system. It is up to the operating system to give
back to the program the name of a file which is also set up for the action (input
or output of data, for example) which the program wants to perform on that
file (and which the program will henceforth think of as inFile).

The default behavior may be for the operating system to look for a file having
the same name as the program passes to it, but it may also be the case that
the operating system has been told via some other means to think of the name
in_data as some particular file, say my0ldData or FEBRUARY.DAT. Analogous
statements hold for the file outFile.

R VR

Simple file input and output 51

Answer

5.4.1.4 Follow-up hands-on activities for textfile_io.cpp

O Activity 1 Copy, study, test and then write pseudocode for textfile_io.cpp.
For testing, use the sample input data files whose contents are shown below.
For the output files, use the same filenames as the input filenames, but supply
extensions outl, out2 and out3, to correspond with the input file extensions
ini1, in2 and in3. Find a way to complete this activity without making any
changes to textfile_io.cpp. Fill in your predictions for the output values in the
given spaces following each input data set. Then compare the contents of the
corresponding output file with your predictions.

The first sample input data set is in a file called textfile_io.in1, and is shown
between the heavy lines below:

3 2-1

ab c

-5.4-7.6+9.8

+7+6+5+4+3+2+1

il = i2=_ 0@ i3 =
cl = c2=_____ @@ c3 =
rl = r2=_____ = 13=
i4 = is5= i6 =
cd = cb=_ @@ c6 =

r4d = r5= ré6 =

How does your operating
system deal with the name
that appears within the
double quotes in a C++
executable statement like
file.open("some_name");?
Or, what do you do

if some_name is not the
actual name of the file?

N

52 Simple file input and output

The second sample input data set is in a file called textfile_io.in2, and is
shown between the heavy lines below:

5-3+2.5%6.3e-2+3.03-4.5E+1-7-6-5

+=.3-2+0

i1 = i2 = i3 =
cl = c2 = c3 =
rl = r2 = r3 =
i4 = ib = i6 =
c4 = chb = c6 =
rd = r5 = r6 =

The third sample input data set is in a file called textfile_io.in3, and is shown
between the heavy lines below:

4

3-2.
+7.23E2-.2.5

+7 23 2-.2.5.9+3

i1 = i2 = i3 =
cl = c2 = c3 =
rl = r2 = r3 =
i4 = i5 = i6 =
c4 = ch = c6 =
rd = r5 = r6 =

O Activity 2 Copy textfile_io.cpp to textfile_iol.cpp and bug it as follows:

a. Omit the line that includes the fstream header file.

b. Omit the declaration of inFile.

Simple file input and output 53

c. Omit the declaration of outFile.

d. Omit the statement which opens the input file.

e. Omit the statement which opens the output file.

f. Combine the first three input statements into a single input statement.

g. Change the executable statement inFile.get(c4); to inFile >> c4;,
and make analogous changes to the two statements that read values into
c5 and c6.

h. Omit the statement which closes the input file.

i. Omit the statement which closes the output file.

O INSTRUCTOR CHECKPOINT 5.1 FOR EVALUATING PRIOR WORK

54

Simple file input and output

Module 6

A simple “shell” starter
program with I/0O, a menu,
selection, and looping

6.1

Objectives

To learn about the following C++4 reserved words: switch, case, break,
do, and while.

To understand what is meant by a menu-driven program.

To understand the basic notion of selection, which allows a program to
choose what to do next from two or more alternative actions.

To understand the basic notion of looping, which allows a program to
repeat one or more actions.

To understand how the C++ switch-statement works to permit selection in
the context of a simple menu-driven program, by choosing the appropriate
one of several “cases”, each of which is an action to be performed.

To understand how the C++ break-statement works in the context of a
switch-statement.

To understand how the C++ do...while-statement works to permit looping
in the context of a simple menu-driven program.

To understand how formatting is used (in particular, indentation and
alignment) to make a program with selection and looping more readable.

To understand the pseudocode structure for any simple menu-driven pro-
gram.

%)

Mowving beyond simple
sequential logic

Selection and looping

56 A simple “shell” starter program

e To gain further appreciation for the way pseudocode can be used to “hide
the details” in a program and allow the programmer to describe clearly
the actions to be performed at a “higher level” and postpone having to
deal with the “lower level” details.

6.2 List of associated files

e shell.cpp contains a general-purpose “shell” program.

6.3 Overview

Up until now, all of our programs have been entirely sequential. That is, each
program started by executing the first executable statement (in the main func-
tion), then the second, and so on in sequence until all of the executable state-
ments in main had been executed, at which point the program ended and re-
turned a value of 0 to the operating system to indicate “success”. Programs
structured in this way are of course quite limited in the kinds of things they
can do, since they have no decision-making ability and no ability to repeat any
actions unless all of the code to repeat the action is itself duplicated in the
program.

In this Module we introduce in a simple way two concepts that are vital to
computer programming: the notion of selection, and the notion of looping. The
first allows a program to decide which of various alternatives to perform and
the second allows actions to be repeated.

Both of these ideas will be covered in much more detail in later Modules, but
we introduce them here in the context of a simple menu-driven program which
serves two purposes: it illustrates selection and looping in a context in which
they are actually often used, and the program itself can be used as a model and
starting point for many programs that you will write from now on.

6.4 Sample Programs

This is another Module with just one sample program, but a very important
one. It introduces several new ideas you will be using continually from now
on. Be sure you get a good grip on the two central concepts (“big ideas”) that
it illustrates, i.e., selection (choosing one from several alternative actions) and
looping (repeating one or more actions). You will have lots of opportunity to
deal with the small details of the actual constructs used here, as well as other
related constructs, as time goes on.

© 0w N e U A W N =

I B
A W N = O

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51

with 1/0, a menu, selection, and looping

6.4.1 shell.cpp provides a general-purpose menu-driven
“shell” starter program

//shell.cpp
//Acts as a general-purpose "shell" program.

#include <iostream>
using namespace std;

int main()
{
int menuChoice;
do
{//Body of do...while-statement must be enclosed in braces
cout << "\n\n\t\t" << "Main Menu"
"\n\n\t\t" << "1. Quit"
"\n\t\t" << "2. Get information"
"\n\t\t" << "3. Perform some action"
"\n\t\t" << "4. Perform some other action\n\n";
cout << "Enter the number of your menu choice here "
"and then press the Enter key: ";
cin >> menuChoice; cin.ignore(80, ’\n’);
cout << endl << endl;

//A break-statement within a switch-statement causes a "jump"
//to the first statement following the switch-statement.
switch (menuChoice)
{//Body of switch-statement must be enclosed in braces
case 1: //Do this if menuChoice is 1.
cout << "You have chosen to quit. "
"Program is now terminating.\n";
break;

case 2: //Do this if menuChoice is 2.
cout << "This program can be used as a starting point "
"for many C++ programs.\nA general description of "
"whatever your program does should go here.\n";
break;

case 3: //Do this if menuChoice is 3.
cout << "Now performing some action in response
"to user choosing menu option 3 ...\n";
break;

case 4: //Do this if menuChoice is 4.
cout << "Now performing some action in response "

"to user choosing menu option 4 ...\n";
break;
}
cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);
} while (menuChoice != 1); //While user does not choose quit option

cout << endl << endl;

o7

More C++ keywords

Menu-driven programs

More on output
formatting

Selection with switch

Looping with do. . .while

Flow of control

Choosing appropriate
control structures

do...while is “best” here

switch is “best” here

58 A simple “shell” starter program

6.4.1.1 What you see for the first time in shell.cpp

e The following new C++ reserved words: switch, case, break, do, and
while.

e A menu-driven program, which is a program that offers the user a menu
of possible actions, prompts the user to enter a menu choice, and then
responds appropriately to the user’s choice

e Some variants on the \n\t character combination used for positioning
output, which can often (as you see here) lead to somewhat more compact
code than using endl and blank spaces to achieve a similar effect

e The use of a switch-statement to make a selection (in this case, based on
the user’s menu choice)

e The use of a case-selector and a break-statement within a switch-statement

e The use of a do...while-statement to perform a loop

6.4.1.2 Additional notes and discussion on shell.cpp

First, you will already have observed that this program doesn’t really do very
much, so it is the overall structure and flow of control in the program that’s
important here.

There are alternate C++ control structures that provide other ways to per-
form both selection and looping, and we will meet them in later Modules. How-
ever, it can be argued that the do...while-statement and the switch-statement
are the “natural” choices for this program, if not the only ones. Thus, we could
have used a while-statement and a nested-if construct or sequential-if construct
(both to be discussed in later Modules), but for the task at hand we argue that
the most “readable” choices are the ones we’ve made, for the reasons we now
discuss.

The do...while-loop is a “natural” choice here since it is an example of what
is called a post-test loop (the test for whether the statements in the body of
the loop should be executed comes after the statements, i.e., at the end of the
loop) and in this program that’s what we need since we always want the menu
displayed and a choice made at least once.

The switch-statement is a natural choice here for the decision-making be-
cause it provides a mechanism for making a multi-way decision, based on which
of several constant values is matched by the value of a variable (or expression).
That is, there are more than two choices and the choice of the action to be
performed can be determined by matching the user’s menu choice entry with
one of the labels or “cases” in the switch-statement.

Take particular note of the formatting of both the switch-statement and the
do...while-statement. Note how the “body” of each is indented relative to the
braces which enclose it. Note how those enclosing braces are aligned with one
another and with the key words of the construct. What you see here is not

with 1/0, a menu, selection, and looping 59

the way everyone does it, but a fairly common convention and the one we will
follow.

It is worth pointing out that although this particular menu-driven program is
of the simplest and somewhat “old-fashioned” kind, the principles and structure
would remain the same, no matter how complex the details. In other words, if
we were dealing with a graphical user interface and a drop-down menu in color
to display the choices to the user, and then a mouse click by the user to make
the choice, we would still need code to produce the display and code to get the
user’s response. The code would be much more complicated and the interface
“fancier”, but the underlying principles are exactly the same.

This program is a very useful starting point for many console programs. It
is easily modifiable and easily extensible just by adding more menu options and
more corresponding choices in the switch-statement, and by including code that
actually does something instead of code that just says something.

Note that the pseudocode for a simple menu-driven program like the one in
shell.cpp takes the following form, in which we take advantage of the fact that
our language of choice is C+4 by incorporating some C++ keywords into the
pseudocode.

do

Display a menu

Get a menu choice from the user

Perform the action corresponding to the user’s choice
while the user has not chosen to quit

This is fair game, and a practice commonly followed by programmers. That
is, C4++ programmers will often write pseudocode that “looks like” C++, Pascal
programmers might well write Pascal-like pseudocode, and so on.

For example, without going into details about Pascal, let’s say that it’s
entirely possible that a Pascal programmer might write the above pseudocode
like this:

repeat

Display a menu

Get a menu choice from the user

Perform the action corresponding to the user’s choice
until user chooses to quit

And, though those familiar with the Pascal programming language would rec-
ognize this as Pascal-like pseudocode, it should be no harder for a C++ pro-
grammer with equivalent experience to understand this version than it was for
that same programmer to understand the first version. This, of course, is the
whole point of pseudocode.

One could even take a stab at writing the above pseudocode in a “language
independent” fashion, as in

loop

Display a menu

Get a menu choice from the user

Perform the action corresponding to the user’s choice
endloop if choice is ‘‘quit’’

The principles of a
menu-driven program
remain independent of the
actual user interface.

The shell program s easily

modified and extended.

Pseudocode for a
menu-driven program

60 A simple “shell” starter program

but there are, thankfully, no universally accepted conventions for writing pseu-
docode which we all have to follow.

6.4.1.3 Follow-up hands-on activities for shell.cpp

O Activity 1 Copy, study and test the program in shell.cpp. On this occasion,
we have already provided the program’s pseudocode.

O Activity 2 Copy shell.cpp to shelll.cpp and bug it as follows:

a. Change the type of menuChoice from int to char in its declaration.

b. Remove the line of code that causes the program to pause after a menu
choice has been executed. Do you like the “user interface” when the pro-
gram runs better before this change, or afterwards?

There are many other changes we could ask you to try in this program,
and you should feel free to introduce some of your own. However, since
we have introduced the do...while-statement, switch-statement and break-
statement here just for the convenience they provide to our “shell”, and
not to be studied in detail at this point, we postpone the “bugging” of
these constructs till later when we consider them in depth.

(O INSTRUCTOR CHECKPOINT 6.1 FOR EVALUATING PRIOR WORK

O Activity 3 Make a copy of shell.cpp called shell hello.cpp and modify the
copy so that it is essentially a menu-driven version of the “Hello, world!” pro-
gram of hello.cpp from Module 1. That is, the program must be menu-driven,
must quit if the user chooses option 1, must display a brief description of itself if
option 2 is chosen, and must display “Hello, world!” if option 3 is chosen. There
need not be an option 4 in this case. Pay some attention to the formatting of
your output so that it is pleasing to the eye.

(O INSTRUCTOR CHECKPOINT 6.2 FOR EVALUATING PRIOR WORK

O Activity 4 Make a copy of shell.cpp called shell myinfo.cpp and modify the
copy so that choosing option 1 quits, choosing option 2 provides a program de-
scription, choosing option 3 displays your name and address while at university,
and choosing option 4 displays a list of the courses you are taking during the
current term. Pay some attention to the formatting of your output so that it is
pleasing to the eye.

(O INSTRUCTOR CHECKPOINT 6.3 FOR EVALUATING PRIOR WORK

Module 7

Evaluating arithmetic
expressions

7.1

Objectives

To learn how to form and evaluate arithmetic expressions involving the
arithmetic operators for addition (+), subtraction (-), multiplication (*),
and division (both / and %).

To understand the order of precedence of these operators when evaluating
expressions.

To learn how the following special C++ operators work: ++, —= += -=

*=, /=, U=

7.2 List of associated files

eval_expressions.cpp illustrates the evaluation of some simple arithmetic
expressions.

more_operators.cpp illustrates some special C++ operators.

7.3 Overview

The evaluation of arithmetic and other numerical expressions forms a large part
of what computer programs do, so it will be important for you to know how
arithmetic works in C++. For the most part, things are much like you would
expect from whatever prior experience you may have had, but as always there
are some things to watch out for. Also, C++ is a language rich in arithmetic
operators so there are some new ones to learn, as well as a few “shortcut”
assignment operators, each of which combines the usual assignment operator
with an arithmetic operator.

61

Arithmetic is much
like you’d expect,
except for division.

62 Evaluating arithmetic expressions

7.4 Sample Programs

7.4.1 eval_expressions.cpp evaluates arithmetic
expressions and displays those values

1 //eval_expressions.cpp

2 //Illustrates arithmetic expression evaluation, and

3 //arithmetic operator precedence rules.

4

5 #include <iostream>

6 using namespace std;

7

8 int main()

o {

10 cout << "\nThis program displays the results of "

11 "evaluating several arithmetic expressions.\n\n";

12

13 cout << "This first group involves only integer values:\n"

14 << "1 +2%x5-3%5 -=> " << 1+2%x5-3%5 << "\t
15 << "(1+2) x5 - (3%5)-->"<<(1+2)*x5-(3x%5)<<"\n"
16 << "13/ 2% 3 -=> " << 13/ 2 % 3 << "\t
17 << "12 + 3 /4 %2 -=> " <12+ 3 /4 %2 << "\n"
18 << "238 % 10 + 3 % 7 -=> " << 238 % 10 +3 %7 << "\t
19 <K "5 x 2/ 4 %2 -=> "< B *x 2/ 4 %2 << "\n"
20 << "5 x 2/ (4 % 2) -> " << b5 x2/ (4% 2) << M\t
21 << "5 +2/ (4% 2) -—=> " <K5+2/ (4x%2) << "\n"
22 << "10 % 3-4/2 -—> " << 10 %3-4/2 << "\n\n";
23

24 cout << "This second group involves only floating point values:"

25 << "\n2.61 + 13.4 - 6.2 / 0.2 —=> " << 2.61 + 13.4 - 6.2 / 0.2
26 << "\n(-5.3 + 1.1) * 5.0 -=> " << (-5.3 + 1.1) * 5.0

27 << "\n\n";

28

29 cout << "This third group involves both "

30 << "integer and floating point values:\n"

31 << "3.1 +2 -=> " << 3.1+ 2 << "M\t\t"

32 << "5 - 3.6 -=> " << 5-3.6 << "\n"

33 << "3.14 * 4 -=> " << 3.14 * 4 << "\t

34 << "0.123 / 3 --> " << 0.123 / 3 << "\n"

35 << "3.6 + 6 / 10 --> " << 3.6 +6 /10 << "\t\t"

36 << "-1.7+10/4->" <K<-1.7+10/ 4 << "\n"

37 << "-1.7 + 10 / 4.0 ==> " << -1.7 + 10 / 4.0 << "\t\t"

38 << "1/3 + 2/3 -=> " << 1/3 + 2/3 << "\n"

39 << "1.0/3 + 2/3 --> " << 1.0/3 + 2/3 << M\

40 << "1.0/3 + 2/3.0 -=> " << 1.0/3 + 2/3.0 << "\n"

41 << endl;

42}

Evaluating arithmetic expressions 63

7.4.1.1 What you see for the first time in eval _expressions.cpp

e The use of all four of the “usual” arithmetic operators—the +, -, * and /
operators—in arithmetic expressions involving integer values, real number
values, and a mixture of both

e Examples showing that the division operator / may be used to perform
both integer division (which occurs when both numerator and denomina-
tor, i.e., both operands, are integers, and the result of which is just the
quotient of the division) and real division (which occurs when at least
one of the operands is a floating point value, which is the usual division
you would probably expect, and the result of which is the one you would
normally get if you divided the same two numbers using a calculator)

e The use of the modulus operator % to find the remainder after dividing
one integer by another (i.e., after integer division)

e Examples in which a knowledge of operator precedence is necessary for
proper evaluation

An operator precedence table is the most convenient way to view arith-
metic (or other) operators and their precedence. Here is the first of several
such tables that you will see, and note that the assignment operator (=)
is also included:

highest !/ h

n+ %
|

lowest

The fact that the assignment operator has the lowest precedence in the
table is the reason why, in an assignment statement like

n=2x3;

the multiplication takes place first, and then the assignment.

e The use of parentheses to clarify, as well as to change, the order in which
operations will be performed

e The behavior of cout when asked to output an arithmetic expression: It
first evaluates the expression, then outputs the result; to output the actual
expression you have to make the expression a string constant by enclosing
it in double quotes.

7.4.1.2 Additional notes and discussion on eval_expressions.cpp

Compare carefully the source code of this program with the output it produces,
and make sure you understand how the formatting of the output is achieved.
Not that this particular program is a model to be admired and emulated. It’s
just that, as always, it is useful to study code and see how it does what it does.
This program will require some attention to detail to do this, but will therefore
provide some good practice in program reading.

The usual arithmetic
operators: +, =, *, [/

But be very careful how
you use the / operator.

Know what the %
operator does for you.

Operator precedence

Parentheses used for
change or clarification

How cout “outputs
an arithmetic expression’

4

Based on shell.cpp

64 Evaluating arithmetic expressions

7.4.1.3 Follow-up hands-on activities for eval_expressions.cpp

O Activity 1 Copy, study, test and then write pseudocode for eval_expressions.cpp.

Of course it is always important, and we take it to be implicit most of the time,
but here it’s really important so we mention it ezxplicitly: Don’t forget to predict
the output when you run the sample program before you actually run it.

Remember, in this case as in all similar situations, that just running
the program and staring at the output is a complete waste of time.

O Activity 2 Copy eval_expressions.cpp to eval _expressionsl.cpp and bug it as
follows:

a. In both instances of (1 + 2) in line 15 remove the parentheses.

b. Replace 0.123 / 3 by 0.123 % 3 in line 34.

O Activity 3 First, predict the output of the code shown below by entering what
you believe to be the output in the spaces provided following the code. Then
write a suitable program that includes this code and test your prediction. Put
the program in file called eval_expressions2.cpp.

cout << 8 -5 % 7+ 16/ 3 x2< "

<< -1.5%5 - 3 + 1/2 << endl;

cout << 8.2 -4 /3 +6 /056" "
-1

«KT7-4/3+9%Y%4 << endl;

O Activity 4 Make another copy of the file eval_expressions.cpp and call the copy
eval _expressions3.cpp. Modify the copy so that each literal numerical value in
the program is 2 more than its value in the original program. This gives you a
whole new set of computed values to predict. So, predict what values will be
output when this revised program is now compiled, linked and run. Run the
program and compare your predictions with the output.

O Activity5 Make a copy of the file shell.cpp from Module 6 and call the
copy shell calculator.cpp. Modify the copy to produce a simple “calculator
program” which allows the user to add, subtract, multiply or divide two integers,
and to do this as many times as the user desires before quitting.

(O INSTRUCTOR CHECKPOINT 7.1 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

Evaluating arithmetic expressions 65

7.4.2 more_operators.cpp illustrates the increment,
decrement, and some special assignment operators

//more_operators. cpp
//I1llustrates the use of the increment and decrement
//operators and some additional assignment operators.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program illustrates the use of the increment and "
"decrement operators\n(++ and --) as well as the following "
"assignment operators: +=, -=, *=, /=, J=\n\n";

int 1 = 6;
int j = -3;
double x = 4.23;
double y = -0.72;

cout << "On the line below each arrow points at "
<< "the value of the variable on its left:\n"

<" i =-=>" << i
<< " j-> "<
<< " x -=> " << x
<"y => << y << endl << endl;
i++; //Increments i by 1 (equivalent to: ++i; or i = i + 1;)
--j; //Decrements j by 1 (equivalent to: j--; or j = j - 1;)
++x; //Increments x by 1 (equivalent to: x++; or x = x + 1;)
y--; //Decrements y by 1 (equivalent to: --y; or y =y - 1;)
cout << "On the line below each arrow points at "
<< "at the value of the same variable\n"
<< "after the statement on its left has executed:\n"
KM dH; —=> MK E KK ——f; => MK
KK " oHHx; > " KK x <K "oy-—; -=> " K<y << "\n\n";
cout << "Now we execute the following statements:\n"
«< " x += 6.32;\n"
<< " y -= -1.73;\n"
<< " i *= 6 + 3;\n"
<" j /= 35\
<" i %= 11;\n\n";
X += 6.32;
y -= -1.73;
i *= 6 + 3; //What about operator precedence here?
j/=3;
i %= 11;
cout << "And finally, once more ...\nOn the line below each arrow "
"points at the value of the variable on its left:\n"
<" i ==>" << i
<< j o> "< j
<< " x -=> " << x
<< " y -——> " << y << endl << endl;

Special operators for
incrementing/decrementing
numerical variables.

Special assignment operators

At least for now,

use the increment and
decrement operators only
in stand-alone statements.

66 Evaluating arithmetic expressions

7.4.2.1 What you see for the first time in more_operators.cpp

e The use of the increment and decrement arithmetic operators—the ++
and -- operators—to increment or decrement by 1 the value in a variable
containing an integer or a variable containing a real number

e The use of these special assignment operators: +=, -=, *=, /= and %=

7.4.2.2 Additional notes and discussion on more_operators.cpp

At least for the moment you should follow this advice: Use the increment and
decrement operators only in the way shown in this program, i.e., use them only
to increment or decrement a single variable in a stand-alone statement.! Do
not use these operators in arithmetic expressions. For that reason we need not
consider their precedence. The precedence of the new assignment operators is
the same as that of the original assignment operator.

7.4.2.3 Follow-up hands-on activities for more_operators.cpp

O Activity 1 Copy, study, test and then write pseudocode for more_operators.cpp.

O Activity2 Copy more_operators.cpp to more operatorsl.cpp and then bug it
as follows:

a. In the statement x += 6.32; of line 43, change += to =+.

b. Change the statement i %= 11; of line 47 to x %= 11.

O Activity 3 First, predict the output of the code shown below by entering what
you believe to be the output in the spaces provided following the code. Then
write a suitable program that includes this code and test your prediction. Put
the program in file called more_operators2.cpp.

int i = -12;

double x = 4.3;

i--;
++X;

i *= -3;
i %= 8;

X -= i,

cout << 1 << " " <K<K x << endl;

HNNEEEEEEEEEEEEEEEEEEEEEEEEEEEN

(O INSTRUCTOR CHECKPOINT 7.2 FOR EVALUATING PRIOR WORK

1But for the curious and venturesome, see increment_decrement.cpp in Module 19 for
some of the things that can go wrong if you do not follow the advice of the above paragraph.

Module 8

Using library functions

8.1 Objectives

e To learn about some of the mathematical functions in the C++ standard
cmath and cstdlib libraries.

e To learn the names of some of the other C++ standard libraries, the
names of some of the functions contained in those libraries, and what
those functions can do for you.

8.2 List of associated files

e library functions.cpp performs calculations using some of the common
mathematical functions found in the Standard C++ libraries cmath and
cstdlib.

8.3 Overview

Many calculations and other procedures are best performed with the help of
“built-in” functions available from one or more of the standard C++ libraries.

The C++ libraries
contain many useful

We are already familiar with a few of the C++ libraries—the iostream and functions.

iomanip libraries, for example—from which we get the things we usually need
to perform keyboard input and screen output.

In this Module you explore additional C++ libraries and functions contained
in them. Becoming familiar with what is available from the C+4+ libraries is an
important part of becoming a good C++ programmer. In fact, whenever you
need to perform a certain calculation or task, the first question to cross your
mind should be: Is there a function in one of the C++4 libraries that will do the
job for me? This approach will help to keep you from “reinventing the wheel”
on many occasions.

67

Always try to avoid
reinventing the wheel.
Check your C++ libraries!

68 Using library functions

8.4 Sample Programs

8.4.1 library_functions.cpp performs calculations using
functions from the standard cmath library

1 //library_functions.cpp

2 //Illustrates computations involving functions from the C++ cmath library.

3

4 #include <iostream>

5 #include <cmath>

6 //#include <cstdlib>

7 using namespace std;

8

9 int main()

10 o

11 cout << "\nThis program displays the results of evaluating "

12 "expressions\ninvolving functions from the C++ cmath "

13 "library.\n\n";

14

15 cout << "The square root of 25.0 is " << sqrt(25.0) << ".\n"

16 << "The square root of 12.34 is " << sqrt(12.34) << ".\n\n";

17

18 cout << "The absolute value of 2 is " << abs(2) << " A\n"

19 << "The absolute value of -2 is " << abs(-2) << " \n"

20 << "The absolute value of 13.456 is " << abs(13.456) << ".\n"

21 << "The absolute value of -13.456 is " << abs(-13.456)

22 << " A\n\n";

23

24 cout << "2.0 raised to the power 3 is " << pow(2.0, 3) << ".\n"

25 << "2.4 raised to the power 3.1 is " << pow(2.4, 3.1) << ".\n"

26 << ".04 raised to the power -.5 is " << pow(.04, -.5) << ".\n\n";

27

28 double r;

29 r = sqrt(1 + pow(4.0, 3));

30 cout << "The square root of 1 more than "

31 << "the cube of 4 is " << r << ".\n";

32 cout << endl;

33}

34

8.4.1.1 What you see for the first time in library_functions.cpp

Most commonly-used e The inclusion of the cmath and stdlib header files! for access to many
mathematical functions of the common mathematical functions that the C++ Standard Library
are readily available. provides

e Use of the sqrt, abs, and pow mathematical functions

e Conversion of the verbal description of an expression into an actual ex-
pression for evaluation (a kind of “word problem”)

IThe fact that the names of these two header files both begin with a ‘c’ indicates that
they are two of the “legacy” libraries carried over to C++ from the C programming language.
The new C++ Standard naming convention for the old C libraries is to add this extra ‘c’ to
the beginning of the old name. Your compiler may permit (or still require) either <math.h>
or <stdlib.h>, or both, instead.

Using library functions 69

8.4.1.2 Additional notes and discussion on library_functions.cpp

There are many more functions in the C++ math library than we have used in
library_functions.cpp, including exponential, logarithmic, trigonometric and
other functions. On the other hand, not all mathematical functions available
in C++ are found in the math library either. Many of the libraries available
to C++ programmers are carried over from the C programming language, and
so for historical reasons the distribution of functions throughout libraries is not
quite what it might have been if the libraries had all been designed from scratch.

8.4.1.3 Follow-up hands-on activities for library_functions.cpp

Check your local
documentation to see
what’s available.

O Activity 1 Copy, study, test and then write pseudocode for 1ibrary functions.cpp.

O Activity 2 Copy library_functions.cpp to library functionsi.cpp and bug it
as requested below. Except for the last change, which should cause an error on
every system, any of these “bugs” may or may not cause a problem, depending
on your particular compiler.

a. Omit the compiler directive that includes the cmath header file.

b. Omit the compiler directive that includes the cstdlib header file.

c. Replace sqrt(25.0) in line 15 with sqrt (25).

[N

. Replace pow(2.0, 3) in line 24 with pow(2, 3).

¢}

. Replace pow(2.0, 3) in line 24 with pow(2.0).

O Activity 3 The ability to read carefully is always a useful skill. This activity is
designed to test your ability to read carefully the description of an expression
to be evaluated, and then turn that description into a corresponding equivalent
mathematical expression for purposes of evaluation in a program.

Each of the statements shown below is meant to be such a description, with
the three question marks 777 representing the result that would be obtained by
actually computing the value described. Your task is to first determine what
each value would be, then design and write a suitable program that produces
the exact output shown, except (of course) that each 7?77 is replaced in the

Based on shell.cpp

70 Using library functions

output by the actual value as computed by the program. These exercises are
reminiscent of the “word problems” that most stduents have encountered in
high school.

If you find that one or more of the statements is ambiguous (i.e., it admits
to more than one interpretation) then your program should output a statement
(and include a corresponding formula) for each possible interpretation.

The values computed by your program must, naturally, agree with what you
deduced they would be before writing the program. Place the program in a file
called word_problems. cpp.

The absolute value of 4 less than the square root of 9 is 777.

The square root of twice the value of 3 to the power 4 is 777.

The value of 4 to the power of 3 less than the absolute value
of -2.5 is 777.

The square root of the sum of 3 squared and 5 squared is 777.

O Activity 4 This activity requires you to search through whatever information
you have at hand on the C++ libraries. In each case, find a function that
performs the given task or calculation and in the space provided list the name
of the function and the library in which it is found (i.e., the header file that
would have to be included in your program if your program were to make use
of that function).

a. A function that will convert a lower case letter to the corresponding upper
case letter ('b’ to 'B’, for example).

b. A function that will compute the sine of an angle.

c. A function that will compute the logarithm to the base 10 of a positive
real number.

O Activity 5 Make a copy of the file shell.cpp from Module 6 and call the copy
shell _squares_roots.cpp. Modify the copy to produce a program which allows
the user to find either the square or the square root of any positive number
(integer or real) as many times as desired before quitting.

O INSTRUCTOR CHECKPOINT 8.1 FOR EVALUATING PRIOR WORK

Module 9

Converting data values from
one data type to another

9.1 Objectives

e To understand what it means to convert a data value from one data type
to another.

To understand the similarities and the differences between type coercion
(implicit type conversion) and type casting (explicit type conversion).

e To learn how to perform a type cast (the old way and the new way).

To become familiar with the ASCII table, and to learn how to convert
values between the char and int data types by type casting.

9.2 List of associated files

e number_conversion.cpp converts values of one numerical data type to values
of another numerical data type.

e char_int_conversion.cpp converts between char and int data values.

9.3 Overview

In this Module we consider the question of type conversion. In strongly-typed
programming languages (like C++), most or all data values should never change
their types. However, it is sometimes necessary (or at least convenient) for this
to happen, and the rules may be relaxed somewhat to permit it. In any case,
C++ does permit it, and you should be aware of the details.

71

C++ permits values
to be converted from
one data type to another.

© 0 N o U oe W N e

MMM NN R R R R R R R R R
AW N = O © 0N e G A W N R O

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51

53

54
55

72

Converting data values from one data type to another

9.4 Sample Programs

9.4.1 number_conversion.cpp converts values from one
numerical data type to another

//number_conversion.cpp
//I1llustrates the conversion of some values from one
//numerical data type to another, by coercion and by casting.

#include <iostream>
using namespace std;

int main()

{

cout <<

"data type is converted to\na value of another data type.

"\nThis program shows instances in which a value of one "

n

"Study both source code and output very carefully.\n\n";

int i;

double r;

//Type coercion (implicit type conversion) in assignment statements:
i = 3.24; cout << i << endl; //Each of these two lines may generate
i = 3.97; cout << i << endl; //a conversion warning. Why?

r = 5;

cout << r << endl << endl;

//What style rule have we violated here (for the sake of readability)?

//Type coercion in arithmetic expressions:
cout << 2 * 3.51 + 4 / 1.2 << endl << endl;

//Type casting (explicit type conversion) in assignment statements:
i = static_cast<int>(3.24); cout << i << endl;
i = static_cast<int>(3.97); cout << i << endl;

r

static_cast<double>(5); cout << r << endl << endl;

//Type casting is sometimes necessary in arithmetic expressions
//to obtain a correct answer, as is illustrated by:

int numberOfHits = 68;

int numberOfAtBats = 172;

double battingAverage;

battingAverage = 68 / 172;
cout << battingAverage << endl; //Gives the wrong value. Why?

battingAverage = static_cast<double>(numberOfHits / numberOfAtBats);
cout << battingAverage << endl; //Still wrong. Why?

battingAverage = static_cast<double>(numberOfHits) / numberOfAtBats;
cout << battingAverage << endl; //OK, but
battingAverage = static_cast<double>(number0fHits) /

static_cast<double> (number0fAtBats) ;

cout << battingAverage << endl; //... even better (more specific)

cout <<

endl;

//Type casting is also useful for rounding numbers:

cout <<
cout <<
cout <<
cout <<

static_cast<int>(4.37 + 0.5) << endl;
static_cast<int>(4.61 + 0.5) << endl;
static_cast<int>(4.37 * 10 + 0.5) / 10.0 << endl;
static_cast<int>(4.61 * 10 + 0.5) / 10.0 << endl << endl;

Converting data values from one data type to another 73

9.4.1.1 What you see for the first time in number_conversion.cpp

e Two forms of numerical type conversion Two kinds of

type conversion
— Implicit type conversion via type coercion

— Faxplicit type conversion via type casting

e The need, in certain situations, to perform type casting in order to obtain Sometimes type casting
the correct result in an arithmetic calculation s necessary.

e The use of type casting to perform rounding of floating point values Casting used for rounding

9.4.1.2 Additional notes and discussion on number_conversion.cpp

A perfectly type-safe programming language would not permit a floating point
value like 3.24 to be assigned to an integer variable. However, such an assign- Type-safe programming
ment is permitted in C++4, and in many other programming languages as well languages
(a case of conceptual integrity giving way to operational convenience). C++
has, in fact, quite a complex set of rules for type conversion, only a few of which
are illustrated here.
The mechanism for type casting used here is the static_cast operator.
This and three other casting operators that we have no need for at the moment
have been introduded into C++ relatively recently. There are other, simpler, C-style casting
but “old-fashioned” ways of casting carried over from the C language that also still works in C++.
continue to work in C++. We will look at these alternative casting methods
from C in the hands-on activities, and use them in later programs.

9.4.1.3 Follow-up hands-on activities for number_conversion.cpp

O Activity 1 Copy, study and test the program in number_conversion.cpp, and
then write out its pseudocode.

O Activity 2 Copy number_conversion.cpp tO number_conversionl.cpp and bug it

as follows:
a. Replace static_cast<int>(3.97) by (int)3.97 in line 27. This is one way
to do a cast in C.
b. Replace static_cast<int>(3.97) by int(3.97) in line 27. This is another way

to do a cast in C.

c. Following the two lines (lines 54 and 55)

cout << int(4.37 * 10 + 0.5) / 10.0 << endl;
cout << int(4.61 * 10 + 0.5) / 10.0 << endl << endl;

add the two lines shown below, and indicate what these two new lines do:

74 Converting data values from one data type to another

cout << int(4.372 * 100 + 0.5) / 100.0 << endl;
cout << int(4.618 * 100 + 0.5) / 100.0 << endl << endl;

O Activity 3 Evaluate the expression double(15/10) and also the expression
(double)15/10. Show the two values, and say what the results tell you about
the precedence of the C-style cast, considered as an operator.

O Activity 4 First, predict the output of the code shown below by entering what
you believe to be the output in the spaces provided following the code. Then
write a suitable program that includes this code and test your prediction. Put
the program in file called number_conversion2.cpp.

cout << 12/36 + int(6.58)*2.1 << " "

<< -1.5 * double(-3 + 1/2) << endl;
cout << 8.2 -4 /3+6 /05" "
<< int(3.8 / 2 + 1.6 * 3) << endl;

cout << double(4 + 5 * 2) / double(-4 + 5 * 2) << endl;

(O INSTRUCTOR CHECKPOINT 9.1 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50

Converting data values from one data type to another 75

9.4.2 char_int_conversion.cpp illustrates how to convert
between char and int data values by type casting

//char_int_conversion.cpp
//I1llustrates some local character codes on your system
//and conversion between "int" and "char" data values.

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
cout << "\nThis program shows the int and char values for some "
"of the characters\nin your local character set, and how to "
"convert between them.\n";
cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

char charValue;

cout << "\nEnter any upper or lower case letter, digit, "
"or punctuation character: ";

cin >> charValue; cin.ignore(80, ’\n’);

cout << "The internal integer value corresponding to " << charValue
<< " is " << static_cast<int>(charValue) << ".\n";

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

int intValue;

cout << "\nEnter an integer value from the range
<< static_cast<int>(’A’) << ".." << static_cast<int>(’Z’)
<< n . n ;

cin >> intValue; cin.ignore(80, ’\n’);

cout << "The capital letter corresponding to " << intValue
<< " is " << static_cast<char>(intValue) << ".\n";

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

cout << "\nEnter an integer value from the range "
<< static_cast<int>(’a’) << ".." << static_cast<int>(’z’)
<< Moy

cin >> intValue; cin.ignore(80, ’\n’);

cout << "The lowercase letter corresponding to " << intValue
<< " is " << static_cast<char>(intValue) << ".\n";

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

cout << "\nEnter an integer value from the range "

<< static_cast<int>(’0’) << ".." << static_cast<int>(’9’)

<< n . n ;

cin >> intValue; cin.ignore(80, ’\n’);

cout << "The digit character corresponding to " << intValue
<< " is " << static_cast<char>(intValue) << ".\n";

cout << endl;

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

Casting between
character and
integer values

Different computers
may use different
character sets.

Robust programs

76 Converting data values from one data type to another

9.4.2.1 What you see for the first time in char_int_conversion.cpp

e (Casting a char value to an int value

When this type of cast is done, the resulting integer value will be the
internal integer representation of that character in the character code set
of your computing system.

e Casting an integer value (i.e., an int value) to a char value

This, of course, is just a cast “in the other direction”.

9.4.2.2 Additional notes and discussion on char_int_conversion.cpp

On every computing system, communication between the human using it and
the system itself is based on some particular character set. All systems do not
use the same character set, of course. The most widely used character set (at
least in North America) is ASCII!, but there are others, like EBCDIC?, which
is used in the mainframe world of IBM?3.

The characters themselves are what the human user sees when information is
displayed by the computer, on a screen or on paper from a printer, for example.
But, internally, each of the characters is represented by a small positive integer.

There is no universal agreement on which integer should represent which
character, and, for that matter, no agreement on exactly what the character set
should contain. Hence the existence of several character sets.

However, you would like to be able to count on the upper case letters of
the alphabet forming a contiguous sequence, and the lower case letters and the
numerical digit characters doing the same, and this is true in ASCII at least,
and in most other commonly-used character sets as well.

In any case, the program in char_int_conversion.cpp should exhibit the same
behavior on all systems.

The program is not robust, which means that it does not check the input
entered by the user to see if the user complied with instructions, so you may
want to experiment a little just to see what happens when you enter values
other than those asked for by the program.

By the way, this lack of robustness with respect to input is typical of most
of the programs that we write. What this means, in general, is that a user of
one of our programs is expected to respond appropriately to the prompts for
input provided by the program. If the user does not do this, the program may
or may not do something sensible, but the program is not responsible for what
happens.

Making programs respond sensibly to whatever a user might do when the
program is running requires a great deal of additional effort on the part of the
program developer. In fact, in many commercial programs it may well be the
case that most of the code is devoted to just this problem of dealing with the

LASCII = American Standard Code for Information Interchange
2EBCDIC = Extended Binary-Coded Decimal Interchange Format
3Either you know what IBM stands for, or you don’t need to know, or you don’t care.

Converting data values from one data type to another 77

user, rather than doing whatever it is that the program is designed to accomplish
for the user.

9.4.2.3 Character codes on your system

In the question-and-answer boxes which follow, you are asked to fill in some
information about the character codes used on your system?.

It’s important to remember that a single character, like the capital letter A,
or the escape sequence \n, must be indicated to C++ by enclosing the character
in single quotes, as in A’ or ’\n’.

Answer

Answer

Answer

Answer

Answer

Answer

4See Appendix B for details if your system uses ASCII, the most commonly-used character
scheme on North American computers.

What character code scheme
is used on your computing
system?

What integer codes correspond
to the upper case letters
A, B, ... 0207

What integer codes correspond
to the lower case letters
’a’, ’b’, ... 2’7

What integer codes correspond
to the digit characters
’0°, 17, ... 9’7

What integer codes correspond
to the “control characters”?

In particular, what integer
code corresponds to the tab
character (i.e., \t)?

78 Converting data values from one data type to another

9.4.2.4 Follow-up hands-on activities for char_int_conversion.cpp

O Activity 1 Copy, study, test and then write pseudocode for char_int_conversion. cpp.

O Activity 2 Copy char_int_conversion.cpp tO char_int_conversioni.cpp and bug
it as follows:

a. Replace cin >> charValue with cin.get(charValue) in line 19.

b. When the program is running, and asks for input of a single character
value, enter several character values.

c. Replace all casts using static_cast with C-style casts. In simple situa-
tions like we have here, C-style casts are still used much of the time.

O INSTRUCTOR CHECKPOINT 9.2 FOR EVALUATING PRIOR WORK

O Activity 3 Design and write a program that does the following things. First,
it asks the user to enter a capital letter. Then it asks the user to enter a “shift
value”, which may be a positive integer, or a negative integer. The program
then “shifts” the capital letter entered a number of spaces to the right or left
within the alphabet (depending on whether the shift value entered was positive
or negative), and displays the character at the new position. The number of
positions moved is, of course, the absolute value of the shift value. Put your
program in a file called shift_letter.cpp. Note that there are a number of things
to think about in this problem. For example, what will your program do if the
shift value entered by the user causes a shift to a position that is “off the end”
of the alphabet?

(O INSTRUCTOR CHECKPOINT 9.3 FOR EVALUATING PRIOR WORK

O Activity 4 Design, write and test a program that will allow the user to convert
an integer code to the corresponding character or vice versa (i.e., a charac-

Based on shell.cpp ter to the corresponding integer code), or a real number to the corresponding
(rounded) integer. Assume that only integers that represent valid character
codes will be entered by the user when a corresponding character is desired.
The program must continue to do these conversions until the user quits. Put
your program in a file called shell_conversion.cpp.

O INSTRUCTOR CHECKPOINT 9.4 FOR EVALUATING PRIOR WORK

Module 10

A second look at program
development: structure
diagrams and tracing

10.1 Objectives

e To understand what is meant by a design tree diagram for a program.

e To understand what is meant by a trace of a program, and to learn how
to perform a trace of a simple program.

e To understand what is meant by a named constant, when named constants
should be used, and how to define one.

10.2 List of associated files

e shopping_list.cpp contains a simple “application program” which prints
a “shopping list”.

10.3 Overview

In this Module we come back to the process of program development and look
at the notion of structure diagrams, in particular the design tree diagram, and
how it relates to the idea of top-down design with step-wise refinement in the
context of a “mini-application”. We shall also examine what it means to trace
a program, and learn how tracing can help to discover logic (run-time) errors.

79

© 0 N e U oe W N e

MMM NN R R R R R R R R R
AW N = O © N e O kA W N RO

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51

53
54

80 A second look at program development:

10.4 Sample Programs

10.4.1 shopping_list.cpp contains a simple “application
program” that prints a shopping list

//shopping_list.cpp
//Illustrates a very small "application program"

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
const double TAX_RATE = 0.15;

cout << "\nThis program computes costs for a number of computer "
"related items.\nThe user must enter the number of each item
"required, and the price per item.\nThe tax is fixed at "
<< TAX_RATE * 100 << "%, and the total cost includes tax.\n\n";

"

int numberOfComputers, numberOfPrinters;

double pricePerComputer, pricePerPrinter;

cout << "Enter the number of computers to buy: ";
cin >> numberOfComputers;

cout << "Enter the price per computer:
cin >> pricePerComputer;

cout << "Enter the number of printers to buy: ";
cin >> numberOfPrinters;

cout << "Enter the price per printer: ";

cin >> pricePerPrinter;

cin.ignore(80, ’\n’);

".
H

double costOfComputers = numberOfComputers * pricePerComputer;

double costOfPrinters = numberOfPrinters * pricePerPrinter;

double tax = (costOfComputers + costOfPrinters) * TAX_RATE;

double grandTotalCost = (costOfComputers + costOfPrinters) * (1 + TAX_RATE);

cout.setf(ios::fixed, ios::floatfield);
cout.setf (ios: :showpoint);

cout << setprecision(2);

cout << "\n\n"

"Item Number Price Total\n"
"Name of Units Per Unit Cost\n"
n \nll

"computers" << setw(10) << numberOfComputers
<< setw(16) << pricePerComputer
<< setw(11) << costOfComputers
<< "\nprinters" << setw(11) << numberOfPrinters
<< setw(16) << pricePerPrinter
<< setw(11l) << costOfPrinters
<< "\ntax" << setw(43) << tax
<< "\n \n"
<< "Grand total cost of all items ... "
<< setw(12) << grandTotalCost
<< endl << endl;

structure diagrams and tracing 81

10.4.1.1 What you see for the first time in shopping_list.cpp

e A “mini-application” which, though very small, contains many of the com- Features found in any
ponents of a “real-world” application program: “application program”
— A description of itself that is displayed when it runs
— Both constant and variable quantities

— The need to input data from outside the program itself

Computations involving this input data

Output of both the input data and the results computed by the pro-
gram from that data

It is always a good idea for a program to echo its input data. This is Fchoing input
the term frequently used to mean “to display the input somewhere in the in the output
output”. Doing this gives the user an opportunity to check whether what

the user thought was entered was in fact received by the program, and is

particularly important in a “real-world” application.

e The reserved word const const

e Use of a programmer-defined named constant (namely, TAX_RATE) Named constant

Note the capitalization convention for named constants: all upper case Capitalization convention
letters, with an underscore character (_) separating words in the name). for named constants

A named constant should be used for any quantity that must not change

when a program runs, and for quantities that may change over time but

very infrequently (such as a tax rate, as in this program). There are two

major advantages in using a named constant: first, preventing the value Advantages of using
from being inadvertently altered somewhere in the program; and second, mnamed constants

if it must be changed at some point the change needs to be made in one

place only (the one place where it is defined, not every place it is used).

10.4.1.2 Additional notes and discussion on shopping_list.cpp

Recall that all sample programs that we have shown up to this point have had

as their main focus one or more new features of C++, or were designed as a

vehicle for practice with input and/or output. Our ultimate goal, however, is

to write useful programs that help us solve real-world problems. To write such

programs, you of course need to understand the syntax and semantics of various

C++ language constructs, but no less critical are the need to understand how to Putting it all together
put these “low-level” language constructs together in such a way that they can is the hard part, not
accomplish something useful, and the need to keep track of what you are doing learning the C++ details.
during the process. Top-down design, which we have already discussed, is one

such tool. The following subsections discuss some additional tools for helping

you with these organizational tasks during the program development process.

You’ve been
putting the cart
before the horse!

Now we expect you
to put the horse
before the cart!

But don’t forget
what got you here!

Structure diagrams,
the design tree diagram
in particular

82 A second look at program development:

10.4.1.3 More on pseudocode

We introduced the notion of pseudocode for describing what a program does in
Module 2. That was shortly after we introduced the notion of a program itself,
and we have been asking you ever since, in the hands-on activities, to practice
writing pseudocode for each new sample program that you have encountered.

By now you should be comfortable with the idea of pseudocode and how
it corresponds to actual code, and it’s time to make an important observation:
Thus far your use of pseudocode has been the reverse of the way it should
normally be used!

That is, in actual practice we do mot write actual code first and then write
the corresponding pseudocode. Instead, we write pseudocode before writing
actual code, as one of the aids to help us design and write that code properly
and thus produce correct programs. In fact, if we cannot (or will not, or just
do not) write pseudocode to describe what we want a program to do, there is
little hope that we shall be able to write actual code to perform the task.

From now on, you will be expected to write pseudocode for your programs
as part of the design process. In other words, the instructions, “Design and
write a program to ... 7 implicitly include the expectation that you will write
the necessary pseudocode for each task to be performed by your program, before
you write the actual code.

However, it is also important to continue the practice of writing pseudocode
for pre-existing code (the sample programs, for example), since this will provide
ongoing and very valuable experience and practice.

10.4.1.4 Design tree diagrams and top-down design

Another valuable tool to help us picture the structure of a program is the design
tree diagram, also called a structure diagram, though this last term is somewhat
more generic and we prefer the former.

A design tree diagram for the program in shopping list.cpp is shown in
Figure 10.1. Such a diagram reflects the top-down design of a “structured” pro-
gram. This particular diagram has only two “levels”: main at the top (level 0),
and each of the “logical chunks” of code in main represented by a descriptive
phrase at the next level down (level 1).

In more complicated situations, which we will see later, there will of course
be more levels, and the descriptive phrases representing the “logical chunks” of
code will be replaced by the names of programmed-defined functions, when our
programs come to contain more programmer-written functions than main alone.

structure diagrams and tracing 83

main

Describe program Get data Perform calculations Display output

Figure 10.1: Design Tree Diagram for shopping list.cpp

10.4.1.5 Tracing a simple program “by hand”

Being able to trace a program is a skill that will be useful as long as you continue
to write programs. Since the basic principle remains the same, irrespective of
program complexity, it is a good idea to make sure that you learn what is
involved in performing a program trace within the context of a simple situation
like that given here.

First, note that the main reason for doing a trace is this: Your program
compiles, links and runs, but either it crashes or does not produce the correct
output, and you have been unable to discover the problem by studying the
source code. This means that you have to examine in detail the effect of each
line of code. In other words, you have to perform a trace of the program.

In a simple “hand trace”, you do this by recording, on paper, and using
a template like that shown in Figure 10.2, the value of each variable and/or
expression of interest (which may well be all variables and expressions, at least
in simple programs) after the execution of each line of code.

Executable | Value of each variable and expression of interest | Output
Statement (after the statement finishes executing) (if any)
vl v2 v3 vd ... el e2 ...
statementl | values of the above after execution of statementl
statement2 | values of the above after execution of statement2
statement3d | values of the above after execution of statement3 | output

Figure 10.2: Typical Style of a Generic Tracing Form

These values thus determined are computed by mental or hand calculation,
not by the computer. The point is, to compare what you think the values should
be with what the computer knows they are.

Tracing is a
very useful skill.

Reason for tracing

Compare your trace results
with actual program output.

If there is a debugger available
on your system, how do you
use it to trace a C++ program
and help you find run-time or
logic errors? Or, where can
you get information on how to
use your system’s debugger?

84 A second look at program development:

Once you have completed the template, of course, you run the program
and compare your predictions with the program output and try to resolve any
discrepancies. You will often want to add extra output statements to your
program to display the values of variables or expressions that the program would
not normally display in its output. (We discuss this at more length later when
we talk about embedded debugging code in Module 14.)

10.4.1.6 Tracing a simple program with the help of your system’s
“debugger” (optional)

What we discussed in the previous subsection was a hand-trace of a program,
sometimes also called a pencil-and-paper trace, or manual trace. Most systems
also have a software debugger, i.e. a program that effectively performs a trace
for you. We do not discuss such programs in detail here because they are highly
system-dependent. However, you may wish to explore the capabilities of your
local debugger, if you have one readily available.

Answer

10.4.1.7 Follow-up hands-on activities for shopping_list.cpp

O Activity 1 Copy, study, test and then write pseudocode for shopping list.cpp.

O Activity 2 Copy shopping_list.cpp to shopping list1.cpp and bug it as follows:

a. Omit the keyword const in the definition of the constant TAX_RATE.

b. Omit the keyword double in the definition of the constant TAX_RATE.

structure diagrams and tracing 85

O Activity 3 Copy shopping list.cpp to shopping list2.cpp and make all neces-
sary modifications to the copied program to add two items to the shopping list:
modems and sound cards.

(O INSTRUCTOR CHECKPOINT 10.1

O Activity 4 In this activity you are to complete—perhaps with the help of your
instructor, and using a full-page template having the same design as the one
shown above in Figure 10.2—the trace template for the code computing the
weighted average calculation shown below.

Begin by entering the code into a suitable enclosing program in a file called
bad_average.cpp, and choose some suitable test data. Do not look too closely
at the code for now. Compile, link and run the program. The idea, of course,
is that the code is supposed to compute an average mark out of 10, given two
other “raw” marks as input, and you are (or should be) suspicious of this code
because of the results it is giving you.

Now complete the trace, and compare the program output with your trace
results. Can you identify the problem(s) with the code? In this case the prob-
lems may have been obvious before you started. In other cases you may not be
so lucky!

const int WEIGHT = 0.10;
float rawMarkl, rawMark2, average, weightedAverage;
cout << "This program computes the weighted "
<< "average of two marks.\n";
cout << "Enter two marks out of 100: ";
cin >> rawMarkl >> rawMark2; cin.ignore(80, ’\n’);
average = rawMarkl + rawMark2 / 2;
weightedAverage = WEIGHT * average;
cout << "Markl Mark2 WeightedAverage\n";
cout << setw(5) << rawMarkl << setw(7) << rawMark2
<< setw(13) << weightedAverage << endl;

(O INSTRUCTOR CHECKPOINT 10.2

O Activity 5 Copy shopping list.cpp to shopping list3.cpp, change double to
int in the definition of TAX_RATE, and repeat the steps of the previous activity.

(O INSTRUCTOR CHECKPOINT 10.3

O Activity 6 Design, write and test a program that will perform like the one you
wrote for shopping list2.cpp in Activity 3 above, except that it is based on
shell.cpp and therefore allows the user to produce as many computer “config-
uration lists” as desired before quitting, with different quantities and prices for
each list of (the same) items. Put the program in a file called shell_shopping.cpp.

(O INSTRUCTOR CHECKPOINT 10.4

Based on shell.cpp

86

A second look at program development:

Module 11

The bool data type and
conditional expressions

11.1 Objectives

To understand the bool data type, and its two boolean constant data
values true and false.

To learn how to declare and use a boolean variable (a variable of data
type bool).

To learn how to use the six relational operators, which are also sometimes
called the comparison operators, since each one is used to compare two
quantities: <, <=, > >=, ==and !=

To understand and learn how to use the three boolean operators, which are
also sometimes called the logical operators, since they help us to construct
logical expressions: !, &&, and | |

To understand the precedence of the relational and boolean operators, and
how their precedence relates to the precedence of the previously-studied
arithmetic and assignment operators. The precedence of the five arith-
metic, six relational, and three boolean operators is shown below in a
revised table of precedence which you should study carefully.

highest !
* /)
+ -
< <= > >=
== 1=
&&
'
lowest all assignment operators

87

bool, true and false
are reserved words.

Siz new (relational)
operators

Three more new
(boolean) operators

Having more operators
means we need a revised
precedence table.

Understanding terminology
helps to avoid confusion.

Try to get a

handle on this.

boolalpha manipulator

This can come in handy.

typedef will be
more useful later.

88 The bool data type and conditional expressions

e To understand what is meant by each of the following terms: conditional
expression, relational expression and boolean expression

e To understand the difference between a simple conditional (boolean) ex-
pression and a compound conditional (boolean) expression.

e To understand the relationship, in C++4, between the boolean values true
and false and the int values 1 and 0.

e To understand what happens (by default) when you attempt to display
a boolean value, and to learn how to alter that behavior by using the
boolalpha manipulator.

e To understand what is meant by short-circuit evaluation of a (compound)
boolean expression.

e To learn the C++ reserved word typedef and understand how it may be
used to define your own “boolean data type” if your C4++ implementation
does not yet! include the data type bool.

11.2 List of associated files

® bool data.cpp illustrates the bool data type, a boolean variable, and the
evaluation of expressions which have boolean values

There is only one sample program in this Module. This should not suggest
that the topics of the bool data type, boolean values and variables, and expres-
sions whose values are boolean deserves little attention. On the contrary, they
are central players in the power structure of any programming language. It’s
just that it’s rather difficult and artificial to illustrate them in isolation. They
really need to be appreciated in the context in which they are most useful, i.e.,
in decision-making (Module 12 and Module 14) and looping (Module 13 and
Module 14). Nevertheless, it should be helpful to have at least this much expo-
sure to these topics, in isolation, so that you don’t have all those other things
to think about during your first encounter with using them “under fire”.

1Standard C++ does include the bool data type, and at the time of writing so would most
C++ implementations.

The bool data type and conditional expressions 89

11.3 Overview

In subsequent Modules many of the sample programs you will see and the pro-
grams that you will write will have to make decisions of one kind or another.
Those decisions will be based, in the simplest cases, on whether a single sim-
ple condition is true or false. In more complex situations, the decision may be
based on the truth or falsity of several conditions in some combination. Such
conditions often take the form of an expression to be evaluated, in particular a
relational expression or boolean expression formed by using the relational oper-
ators and/or the boolean operators. This Module is designed to introduce you
to these concepts and to provide some exposure to them before you actually
begin to use them in context.

Let’s take a moment and try to clarify some of the terms introduced at the
beginning of this Module, since there is quite a bit of terminology associated
with this topic, and there is plenty of opportunity for confusion.

First, any one of the terms conditional expression, boolean expression or
logical expression may be used in a very generic way to refer to any kind of con-
dition, i.e., to any expression which has a boolean value of either true or false
when evaluated. That is, the terms boolean expression, conditional expression
and logical expression are often used interchangeably. And any one of these
terms may be used to mean any expression that contains one or more operators
and operands, and in which each operand is itself a constant, a variable or an
expression whose value is boolean.

A relational expression refers to a simple conditional expression, i.e., one
containing just one relational operator and two operands (such as (x <= 2.5)
or (ch > ’A%)).

The term compound boolean expression refers to an expression of virtually
arbitrary complexity, but which contains at least two or more “smaller” expres-
sions, each of which would by itself produce a boolean value when evaluated.
The smaller expressions are connected by the &&, || and ! boolean operators
to form the larger, or “compound” expression. The complete expression will
also, of course, have a boolean value. A simple example, containing only two
“smaller” expressions, is this one, taken from the sample program:

7 =3 && -5.3 <= 3.5

Beginning programmers are often surprised when they attempt to display a
boolean value and do not see the expected true or false. The reason is that,
by default, the boolean values are converted to their integer equivalent values
of 1 and 0, respectively, before being displayed. To avoid this, the manipulator
boolalpha can be inserted into the output stream before the boolean values are
displayed, after which the expected (boolean) values will be output.

The effect of inserting the manipulator boolalpha into the output stream is
persistent, which means that from that point on boolean values will be output as
true and false. To “turn off” this effect, and go back to 1 and 0, you can insert
the corresponding manipulator noboolalpha. The use of both manipulators is
illustrated in bool_data.cpp.

© 0 N O U A W N e

[
S)

15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

90 The bool data type and conditional expressions

11.4 Sample Programs

11.4.1 Dbool data.cpp illustrates the bool data type, a
boolean variable, and the evaluation of
expressions which have boolean values

//bool_data.cpp
//I1llustrates the "bool" data type, boolean variables,
//and evaluation of boolean expressions.

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
cout << "\nThis program illustrates the boolean data type, use of "
"boolean variables,\nand the evaluation of boolean expressions. "
"Be sure to study the source code.\n\n";

cout << "Some relational expressions involving "
"just constants, and their values:\n"

"Expression: 7 == A’ 1= A’ 4.6 > 9.3\n"
"Value: " << setw(8) << (7 == 3)
<< setw(11) << (PA’ != ’a’)

<< setw(13) << (4.6 > 9.3) << endl << endl;

cout << "Some compound boolean expressions involving "
"just constants, and their values:\n"
"Expression: 7 == 3 && -5.3 <= -3.5 "

"o == || TN 1= 0 gy) \nu
"Value: " << setw(14) << (7 == 3 &% -5.3 <= 3.5)
<< setw(30) << (2 ==6 || ’A’ != ’a’) << endl

<< boolalpha <<
"Value: " << setw(14) << (7 == 3 &% -5.3 <= 3.5)

<< setw(30) << (2 ==6 || A’ != ’a’) << endl
<< noboolalpha <<
"Value: " << setw(14) << (7 == 3 && -5.3 <= 3.5)

<< setw(30) << (2 ==6 || A’ !=’a’)

<< endl << endl;

int menuChoice;

bool choicelsValid; //Declaration of a "boolean variable"
cout << "Enter a \"menu choice\" value from 1 to 5: ";
cin >> menuChoice; cin.ignore(80, ’\n’); cout << endl;

choiceIsValid = (menuChoice >= 1 && menuChoice <= 5);

cout << "Your menu choice was valid (1) or invalid (0),
"depending on this value: " << choicelsValid;

cout << endl << endl;

"

The bool data type and conditional expressions 91

11.4.1.1 What you see for the first time in bool_data.cpp
e Evaluation of relational expressions containing relational operators

e Evaluation of boolean expressions containing boolean operators, including
compound boolean expressions

e A compound boolean expression that is evaluated by the technique of
short-circuit evaluation (terminating the value of the expression as soon
as the answer is known, which may be before all parts of the expression
have been evaluated)

A boolean variable, and assignment to a boolean variable

11.4.1.2 Additional notes and discussion on bool_data.cpp

There are some background facts about the bool data type that you should
know. First, the C++ language standard requires this data type to be included
as part of the language definition. As we have mentioned before, compilers
always take some time to comply with the latest standard, though at the time
of writing most compilers would contain this data type. The next subsection
tells you what to do if your compiler does not have a bool data type, and you
want to “create” your own version. It’s unlikely that you will have to do this,
but the discussion is interesting in its own right, since it’s a nice simple way to
become acquainted with the typedef keyword.

Since the bool data type is a relatively late addition to the C++ language,
clearly it is not “necessary”. The reason for this is that C++ was designed to be
backward compatible with the C language, in which the value 0 is interpreted as
false, and the value 1 (or, in fact, any non-zero value) is interpreted as true.
This should help to explain the way we show you how to define “your own”
boolean data type (if necessary) in the following subsection.

A major reason for having an explicit bool data type in any programming
language is the same reason that we have some other language features: it is
convenient, and using it can help to make our programs both more readable
and “safer”. But the C approach—1 is true and 0 is false—continues to work
in C++4, as the program in bool_data.cpp also demonstrates.

A style note: One of the things you will observe in the sample program is
the two blank spaces that appear on either side of the boolean operators &&
and | |. Usually we place only a single space on either side of an operator (and
sometimes, to emphasize that the operands go with the operator, we may even
leave out the surrounding spaces). So why have two spaces on either side in this
instance? The reason is to emphasize what the left and right operands of the
boolean operator are. We could, of course, do this with parentheses as well, and
an argument can be made that this is how we should do it. However, using the
double surrounding spaces is meant to have the same effect, and one could argue
that, being less cluttered, the code is more readable than the corresponding
equivalent with the extra parentheses. It’s a personal style choice.

The bool data type is
relatively new in C++.

Be aware of this issue
of “backward compatibility”.

Programming style:
operators and whitespace

typedef creates a synonym
for a pre-existing data type.

typedef is also
a reserved word.

Definition placement
for a programmer-defined
data type

92 The bool data type and conditional expressions

Note that omission of the inner parentheses here is only possible because
the relational operators have a higher precedence than the boolean operators,
which is not the case in all programming languages. And that would be the
best reason for including parentheses in all such expressions, without regard to
the language in use at the time!

11.4.1.3 How to define your own bool data type in case your C+-+4
implementation does not have the real thing (optional)

This subsection may be of interest even if your C++ compiler does have the
bool data type. For one thing, you may possibly encounter an older C+-+
compiler that does not yet know about the bool type. For another, you also
get to see how to use the C++ keyword typedef to define a new type in terms
of an already existing type, a useful piece of information in its own right.

If your compiler does not contain the bool data type, then including the
following three lines in your program will provide a definition for a bool data
type that you can use in the same way you would use the built-in bool type if
it were present.

typedef int bool; //Establishes "bool" as a synonym for "int".
const bool true = 1; //Defining "true" and "false" like this
const bool false = O; //maintains backward compatibility with C.

Since this definition effectively simulates the definition required by the C++
standard, if at any later time your compiler is updated then simply removing
the three-line definition and recompiling should permit your programs to work
properly, without making any other changes.

On the other hand, if your C++ compiler already includes a definition of
the bool data type, then including your own definition like that shown above
will cause a name-conflict error because of the duplication.

Note that the name bool is really just a synonym for int and in particular
for the two special integer values 1 and 0 (which themselves are given the special
names true and false, respectively). That is, the keyword typedef has the
effect of defining a synonym for an already existing data type, when used in this
way.

The definition of bool should be placed outside and prior to the main func-
tion. In a simple program like that of bool_data.cpp it could in fact be placed
inside main, and things would work in the same way. However, it is usual to
place it outside and prior to main so that it becomes “globally” available to
other functions besides main, if there are any, and though there are none now
there certainly will be, later on. When the definition is placed inside main it
becomes “hidden”, and available only to main. But much more on all of that
later.

The bool data type and conditional expressions 93

11.4.1.4 Follow-up hands-on activities for bool_data.cpp

O Activity 1 Copy, study and test the program in bool_data.cpp. Don’t bother
with the pseudocode on this occasion. Take particular note of those values actu-
ally displayed at the places where the program outputs the values of the boolean
expressions it has evaluated. How do you explain what you see?

O Activity 2 Copy bool_data.cpp to bool_datal.cpp and bug it as follows:

a. Remove the parentheses from (7 == 3) in line 19.

b. Remove the parentheses from (2 == 6 || A’ != >a’) in line 29.

c. Remove the parentheses from the statement that assigns a value to the
variable choiceIsValid.

O Activity 3 Which expressions in this program, if any, are evaluated by short-
circuit evaluation?

O INSTRUCTOR CHECKPOINT 11.1 FOR EVALUATING PRIOR WORK

94

The bool data type and conditional expressions

Module 12

Making decisions with
selection control structures
(no looping)

12.1 Objectives

To learn about the following C++ reserved words: if, else, switch, case
and break.

You will have seen switch, case and break already, in one particular
context, if you have covered Module 6 and its associated “shell” program.

To understand when and how to use the C++ if statement, which we
refer to in normal text in hyphenated form as an “if-statement”.

To understand when and how to use the C++ if. . .else statement, which
we refer to in normal text as an “if...else-statement”.

To understand when and how to use a C++ switch statement (switch-
statement) including the associated use of the case selector and case
labels (case-selector and case-labels), and the break statement (break-
statement).

You will have already seen one typical use of the switch-statement, with
a case-selector, case labels, and break-statements if you have covered the
material in Module 6.

To understand the relationship between a nested if-statement and a switch-
statement.

To understand sequential decision-making.

To understand nested decision-making.

95

Programs must be
able to decide
what to do next.

96 Making decisions with selection control structures (no looping)

e To understand the importance of analyzing carefully the nature of any
decision to be made by a program before choosing a particular selection
statement to implement the decision-making process.

12.2 List of associated files

e if.cpp illustrates the if-statement, the if...else-statement, sequential if-
statements, and a nested if-statement.

e switch.cpp illustrates the switch-statement.

e wages.cpp illustrates conditional computation of wages.

12.3 Overview

In this Module you deal with programs® that are able to make various kinds of
decisions, i.e., programs that at various times during their execution are able to
decide which of several possible tasks to perform next. There are many occasions
when a program must be able to decide whether or not to execute a given
statement, and other situations when a choice must be made from two or more
alternatives. This notion of decision-making is also called selection or branching,
and the programming language constructs that permit these decisions to be
made by a program are often referred to as selection control structures, since
they help to “control” the “flow of the action” as a program executes. We will
also examine situations in which sequential decision-making (one decision after
another) and nested decision-making (one decision within another) are necessary
to express the logical flow of a situation.

12.4 Sample Programs

The first two sample programs in this Module (if.cpp and switch.cpp) contain
quite a number of illustrations of decision-making, one of each of the various
kinds outlined above, and you should study them very carefully.

The third and final sample program (wages.cpp) performs some decision-
making in a “practical” context, though a very simple one.

L Any program that appeared in a Module prior to this one consisted entirely of sequentially
executed statements, except for the “shell” program of Module 6 and any others based on it
that you may have written for yourself, there or later.

© 0 N e U oe W N e

G R R R R A A R R A A W W W W OWw W W W W W NNNNNNNNRNNE R e e e e e
= O © N3 %A BN RO OO RW®E RO ®® TR BN SO 00NN A WN RO

Making decisions with selection control structures (no looping)

12.4.1

if.cpp illustrates typical uses of the if-statement,
the if...else-statement, sequential if-statements,

and a nested if-statement

//if.cpp

//Illustrates an if-statement, an if...else-statement,
//a sequence of if-statements, and a nested if-statement.

#include <iostream>
using namespace std;

int main()

{

cout << "\nThis program analyses a lecture section and a mark.\n\n";

int mark;
char lectureSection;

cout << "Enter A, B or C, followed by a mark in the range 0..100: ";
cin.ignore(80, ’\n’);

cin >> lectureSection >> mark;
cout << endl << endl;

//An if...else-statement (control structure)
if (lectureSection==’A’ || lectureSection==’B’
cout << "OK, your lecture section is " << lectureSection << ".\n";

else

cout << "That’s not a valid lecture section.\n";

if (mark >= 50) //An if-statement (control structure)
{//if-statement body with more than one statement requires braces
cout << "\nYou have received a passing mark.\n";
cout << "And that was not an easy course!\n";

}

//Here is a sequential-if construct (sequence of if-statements):
if (mark >= 90) cout << "That is in fact a top-notch mark!\n";
if (mark >= 80) cout << "Congratulations on doing so well!\n";
if (mark >= 65) cout << "You may proceed to the next course.\n";

if (mark >= 50 && mark < 65)

cout << "You should probably not proceed.\n";
if (mark < 50) cout << "You may not proceed.\n\n";

//Here is a nested-if construct (nested if-statement):

if (mark >= 80)

cout << "Your letter grade is an A.\n";

else if (mark >= 70)

cout << "Your letter grade
else if (mark >= 60)

cout << "Your letter grade
else if (mark >= 50)

cout << "Your letter grade
else

cout << "Your letter grade
cout << endl;

is

is

is

is

a B.\n";
a C.\n";
a D.\n";

an F.\n";

lectureSection==’C’)

97

if and else

Decision-making
takes various forms ...

Formatting an if-statement

Match the code segments
from the sample program
with the conceptual

possibilities listed above.

98 Making decisions with selection control structures (no looping)

12.4.1.1 What you see for the first time in if.cpp

e The use of the truth or falsity of both relational expressions and boolean
expressions to help make decisions

e The C++ reserved words if and else

e The use of a simple if-statement, which can be used to decide whether or
not to perform a particular task

e The use of an if...else-statement, which can be used to decide which one
of two alternative tasks to perform

e The use of a sequential-if construct, which can be used to perform zero or
more of several tasks

e The use of a nested-if construct, which can be used to perform either none,
or exactly one, of several tasks

e Typical formatting of the if, if...else, sequential-if and nested-if control
structures

12.4.1.2 Additional notes and discussion on if.cpp

You should study this program carefully, and note the nature of each decision
being made. Note in particular that although this program evaluates several
boolean expressions, it nevertheless does not explicitly use the bool data type.

You should be able to reconcile what the code in the program does with the
description given in the preceding subsection of the kinds of decisions that each
new decision-making construct is capable of making.

In the descriptions of the various constructs, a “task” may consist of a single
C++ statement, or more than one statement, in which case the statements
comprising the task to be performed need to be enclosed in braces to form a
block (a group of statements enclosed in braces and treated as a single entity
for some purpose).

Making decisions with selection control structures (no looping) 99

12.4.1.3 Follow-up hands-on activities for if.cpp

O Activity 1 Copy, study, test and then write the pseudocode for if.cpp. When
testing, you should try to find enough different combinations of input values to
produce all possible outputs from the program. Otherwise, how can you be sure
the program works properly. Think of this as “putting the program through its
paces”.

O Activity 2 Copy if.cpp to ifl.cpp and bug it as follows:

a. Remove the parentheses from (mark >= 50) in line 25.

b. Remove the braces from around the body of the onlyl lif-statement that
has more than one statement in its body.

c. Replace each double equal sign (==) with a single equal sign (=).2

O Activity3 Make a copy of if.cpp called if2.cpp, and modify the copy by
removing the last else and the last cout statement from the nested-if construct.
Note, and verify when you test it, that this changes this particular nested-if
construct from one that chooses exactly one of the possible alternatives to a
nested-if construct that may not choose any of the possible alternatives.

O Activity 4 Make a copy of if.cpp called if3.cpp, and modify the copy in such
a way that if the mark entered does not lie in the range 0..100, the program
does not output any comment on the mark except for the message

A mark of 777 is not valid.

in which the 777 is to be replaced by the actual mark entered.

(O INSTRUCTOR CHECKPOINT 12.1 FOR EVALUATING PRIOR WORK

2Further discussion of this very common programming error may be found at the end of
the hands-on activities on page 129.

© 0 N U R W N =

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

100 Making decisions with selection control structures (no looping)

12.4.2 switch.cpp illustrates how to use the
switch-statement

//switch.cpp
//Illustrates the switch-statement.

#include <iostream>
using namespace std;

int main()

{
cout << "\nThis program gets a user’s opinion of Microsoft "
"(1 = very low, 5 = very high).\n\n";
int opinion;
cout << "Enter a value from 1 to 5: ";
cin >> opinion;
switch (opinion)
{
case 1:
cout << "That’s OK. I won’t tell Bill!\n";
break;
case 2:
cout << "Not so high, eh? You and many other users!\n";
break;
case 3:
cout << "Hmmm! A fence sitter on the subject, eh?\n";
break;
case 4:
cout << "Oh yeah? What have they done for you lately?\n";
break;
case b5:
cout << "The cheque from Bill is in the mail!\n";
break;
default:
{
if (opinion > 5)
cout << "Your opinion is off-scale!!\n";
else
cout << "Now, now, now ... '\n";
}
}
cout << endl;
}

12.4.2.1 What you see for the first time in switch.cpp

Once again, note that you will have seen switch, case, and break already if
you have covered Module 6.

Making decisions with selection control structures (no looping) 101

e The C++ reserved words switch, case, break, and default

e The use of a switch-statement to decide which one of several alternative
tasks to perform, including the use of a case-selector and case-labels to
assist in making the choice

e The use of a break-statement to “break out of” a switch-statement

e The use of the (optional) default option in a switch-statement

The default option is the one executed if the value of the case-selector
does not match any of the case-labels. If there is no default option and
the value of the case-selector does not match any of the case-labels, then
the entire switch-statement has no effect.

e Another form of nested decision-making, produced by having an if...else-
statement as one of the choices inside a switch-statement

e Typical formatting for a switch-statement

12.4.2.2 Additional notes and discussion on switch.cpp

The switch-statement is a multi-way decision-making mechanism, used to decide
which of several tasks to perform. It works by matching the value of the case-
selector (the variable or expression in parentheses after the keyword switch)
to one of a list of constant values (the case-labels). Each one of the constant
values acts as a “label” for one of the possible tasks to be executed.

A break-statement must follow each of the tasks so that the program “breaks
out of the switch-statement” and carries on with the first statement following
the switch-statement. Otherwise, in addition to the task corresponding to the
matching case-label, all tasks subsequent to the one containing the matching
label of the switch-statement will be performed, at least until another break-
statement is encountered. This so-called “fall-through” behavior may be what
is required on occasion, but only rarely does it seem to crop up.

It should be clear that there will be many situations in which relatively
complex decisions (decisions within decisions, for example) need to be made.
That is, there are many possible variations on the “nested decision-making”
you see in switch.cpp, which only has one if...else-statement within a switch-
statement.

Note that this program, like the previous one, does not explicitly use the
bool data type.

12.4.2.3 Follow-up hands-on activities for switch.cpp

O Activity 1 Copy, study, test and then write pseudocode for switch.cpp.

O Activity 2 Copy switch.cpp to switchl.cpp and bug it as follows:

switch, case, break
and default

A switch-statement
can be used for some
multi-way decisions.

default option in
a switch-statement

Formatting a
switch-statement

It’s almost always an
error to leave out the
break after any of

the cases in a switch.

Note this syntax for
multiple cases requiring
the same action.

This exercise
illustrates an
important point.
What is it?

102

Making decisions with selection control structures (no looping)

Remove the parentheses in switch (opinion).

Remove the default option, i.e., remove everything from (and including)
the keyword default to the next closing brace }.

Remove all of the break-statements.

Replace (opinion > 5) by (opinion > 7) and also replace the line
case b:

with the following three lines:

case b5:
case 6:
case 7:

and then re-compile, re-link and re-run with the test values 5, 6, 7 and
8. This illustrates the necessary syntax when you need to have the same
task executed for two or more different case-labels.

O Activity 3 Make a copy of switch.cpp called switch2.cpp and modify the copy
so that the switch-statement is replaced with a nested-if construct.

O Activity 4 Make a copy of switch.cpp called switch3.cpp and modify the copy
so that the switch-statement is replaced with a sequential-if construct.

O Activity 5 Which of the two do you think is likely to be the more “efficient”,
on average, the sequential-if construct or the nested-if construct, and why?

O Activity6 Can you replace the nested-if construct in the sample program
if.cpp you encountered previously in this Module with a sequential-if construct?
If you can, make a copy of if.cpp called if _switch.cpp and modify the copy ac-
cordingly. If not, explain why not in the space given below.

(O INSTRUCTOR CHECKPOINT 12.2 FOR EVALUATING PRIOR WORK

© 0w N U A W N =

I = B
A W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

Making decisions with selection control structures (no looping) 103

12.4.3 wages.cpp performs conditional computation of
wages

//wages.cpp
//I1llustrates the use of an if...else-statement in a "practical" context.

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
const int STANDARD_HOURS 8; /* number of hours per day */
const double WAGE_RATE = 9.5; /*x § per hour */
const double OT_RATE = 1.5; /* "time-and-a-half" */

cout.setf(ios::fixed, ios::floatfield);

cout.setf (ios: :showpoint);

cout << setprecision(2);

cout << "\nThis program computes a worker’s wages for a single day.\n"
"The wage rate is fixed at $" << WAGE_RATE << " per hour for a "
"regular work day.\nTime and a half is paid for overtime, which "
"is anything beyond " << STANDARD_HOURS << " hours.\nA worker "
"gets paid in full for the last hour, even if the hour is not "
"complete.\n\n";

double numHoursWorked;
double wages;
bool overtimeWorked;

cout << "Enter the number of hours worked: ";
cin >> numHoursWorked; cin.ignore(80, ’\n’);
cout << endl;

if (numHoursWorked > (int)numHoursWorked)
numHoursWorked = (int)numHoursWorked + 1;

overtimeWorked = (numHoursWorked > STANDARD_HOURS) ;
if (overtimeWorked)
wages = (STANDARD_HOURS * WAGE_RATE) +
(numHoursWorked - STANDARD_HOURS) * WAGE_RATE * OT_RATE;
else
wages = WAGE_RATE * numHoursWorked;

cout << "Total wages for " << numHoursWorked
<< " hours at this rate: $" << wages << endl;
cout << endl;

Follow-up use of
concepts introduced
briefly in Module 11

Recall the advantages of
using named constants.

104 Making decisions with selection control structures (no looping)

12.4.3.1 What you see for the first time in wages.cpp

e Use of C-style comments of the form /* some_comment */

Because a C-style comment consists of all text that lies between the two
characters /* and the next occurrence of the two characters */, it follows
that a C-style comment, unlike a C++ comment, can extend over multiple
lines. The C-style comments you see in this sample program could be
replaced by C++ comments. Later (in Module 15) you will begin to
see situations in which C-style comments are necessary because of the
placement of those comments.

12.4.3.2 Additional notes and discussion on wages.cpp

Although we mentioned them briefly before (in Module 11), here you see the
explicit use of the bool data type and a boolean variable in a typical context for
the first time. The program is also another instance of a “mini-application” sim-
ilar to the shopping list program of Module 10, but this one, of course, involves
some decision-making and shows you a typical use for an if...else-statement and
a boolean variable.

One other feature shown by this program is the placing of the code for
establishing real number formats (cout.setf () and setprecision()) and the
definitions of the named constants before the program description code, since
these items are actually used in the code that displays the program description.

Note again the use of named constants and how they are capitalized. And
remember that if one or more of these values has to be changed then it needs
to be changed in only one location—namely, in its definition—mo matter how
many places it is used.

12.4.3.3 Follow-up hands-on activities for wages.cpp

O Activity 1 Copy, study, test and then write pseudocode for wages. cpp.
O Activity 2 Copy wages.cpp to wagesl.cpp and bug it as follows:

a. Remove the first three lines in the main function.

b. Remove the first set of parentheses in the if...else-statement.

c. Remove the second set of parentheses in the if...else-statement.

d. Remove the third set of parentheses in the if...else-statement.

Making decisions with selection control structures (no looping) 105

O Activity 3 Make a copy of wages.cpp called wages2.cpp and modify it in such a
way that the boolean variable is eliminated from the program, but the program
continues to work in the same way. Comment on the advantage/disadvantage
of having/not having a boolean variable in a situation like the one you see in
this program.

(O INSTRUCTOR CHECKPOINT 12.3 FOR EVALUATING PRIOR WORK

O Activity 4 Design, write the pseudocode for, and then write the actual code
for, a program that reads in from a user at the keyboard three letter grades—
any one of which may be A, B, C, D or F—and then outputs a table showing
all three grades input and the grade point average. The points assigned to each
grade are: A =4, B=3,C=2,D =1, F = 0. Place your program in a file
called shell gpa.cpp. Compile, link, run and test it until it is working to your
satisfaction.

Technically, the title of this Module promised “no looping”, but what we
really meant was that we would not introduce any new looping constructs while
we were concentrating on selection. Since the next two activities do involve our
old friend shell.cpp, which does contain a loop, we have not strictly kept our
promise, but we hope you will agree we have kept it in spirit.

O INSTRUCTOR CHECKPOINT 12.4 FOR EVALUATING PRIOR WORK

O Activity 5 Design, write and test a program that will perform like wages. cpp,
except that it is based on shell.cpp and therefore allows the user to compute as
many daily wages as required (one at a time) before quitting. Put the program
in a file called shell _wages.cpp.

O INSTRUCTOR CHECKPOINT 12.5 FOR EVALUATING PRIOR WORK

This program could be
based on shell.cpp, but
doesn’t have to be, if
it only processes one
set of grades.

Based on shell.cpp

106 Making decisions with selection control structures (no looping)

Module 13

Repeating one or more
actions with looping control
structures (no selection)

13.1 Objectives

To learn about the following C++ keywords: while, do, and for.

To understand when and how to use a C++ while-statement (also called
a while-loop).

To understand when and how to use a C++ do...while-statement (also
called a do...while-loop).

To understand when and how to use a C++ for-statement (also called a
for-loop).

To understand sequential looping and learn how to implement it.
To understand nested looping and learn how to implement it.

To understand what is meant by the following terms and concepts:

— definite iteration

— indefinite iteration (or conditional iteration)
— loop condition

— loop body

— loop iteration

— loop control variable

— loop control variable initialization

107

Programs must be
able to repeat
one or more actions.

108 Repeating one or more actions

— loop control variable modification

— pre-test loop

— post-test loop

— infinite loop

— counter and counter-controlled loop

— accumulator and accumulator-controlled loop
— sentinel and sentinel-controlled loop

— flag and flag-controlled loop

— end-of-file character and end-of-file-controlled loop

e To understand the conceptual differences between all of the various looping
constructs, and to learn some guidelines for choosing the “best” loop for
a given situation.

13.2 List of associated files

e square_integers.cpp calculates squares of integers using a while-loop.
e sum_integers.cpp computes sums of integers using a do...while-loop.

e display sequences.cpp displays character and numerical sequences using
for-loops, and illustrates sequential loops.

e rounded average.cpp computes the rounded integer average of all integer
values on each input line, and illustrates nested loops.

e draw box.cpp displays an empty box with user chosen size, border and
position.

13.3 Overview

In the previous Module we discussed one major departure from the exclusively
sequential execution we had been used to seeing in our programs by introducing
the notion of decision-making. In this Module we extend the power of our pro-
grams in another direction by learning how to make our programs repeat one or
more executable statements when the need arises. This whole idea of repetition
or looping in a program is one of the central ideas in computer programming
and, though conceptually straightforward, it has more than its share of traps
and pitfalls that you must learn to avoid.

In this Module will also examine situations in which sequential loops (one
loop after another) and nested loops (one loop within another) are necessary to
express the logical flow of a situation.

© 0 N o U A W N e

I S T T N T S I s
A W N =R O © N O oA W N = O

25
26
27
28

with looping control structures (no selection) 109

13.4 Sample Programs

13.4.1 square_integers.cpp calculates squares of integers
using a while-loop
//square_integers.cpp

//Displays a table of integer squares.
//Illustrates a count-controlled while-loop.

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{
cout << "\nThis program displays a table of integer squares from 1\n"
"up to a maximum value chosen by the user.\n\n";
int numberOfSquares;
cout << "Enter the maximum value to be included in the table: ";
cin >> numberOfSquares; cin.ignore(80, ’\n’);
cout << "\n\n n n * n" << endl;
int n = 1;
while (n <= numberOfSquares)
{
cout << setw(4) << n << setw(10) << n * n << endl;
++n;
}
cout << endl;
}

13.4.1.1 What you see for the first time in square_integers.cpp

e A while-loop, which contains: while-loop

— The C++ reserved word while while

— A conditional expression
This is the expression in the (required) parentheses following the Condition tested before
keyword while. It controls whether the loop begins and, if it begins, body of loop executed
when it ends.

— A loop body
These are the statements to be executed on each “pass” through Loop body must modify
the loop, i.e., during each loop iteration. If there is more than one loop control variable
statement in the body of the loop, those statements must be enclosed
in braces. The loop body must contain at least one statement that
modifies the loop condition in the appropriate “direction” (toward a
“termination value”) if the loop is to terminate.

Formatting a while-loop

Loop control variable

Infinite loop

Note the features
of a pre-test loop.

Count-controlled loop

110 Repeating one or more actions

e The typical formatting for a while-loop

Note in particular the level of indentation of the statements in the loop
body, which is one level deeper than the level of the while-statement itself.

e A loop control variable (n in this case) whose value actually determines
whether the loop ever begins executing at all, as well as when the loop
stops executing, and, like all loop control variables, it must be

— initialized before the loop begins
That is, it must be given a starting value.

— modified within the body of the loop
That is, it must have its value changed appropriately within the body
of the loop so that the loop condition eventually becomes false and
the loop terminates. Otherwise you will have an infinite loop, i.e., a
loop that never terminates.

13.4.1.2 Additional notes and discussion on square_integers.cpp

Note that every while-loop, like the one you see in square_integers.cpp, is an
example of a pre-test loop, which means a loop in which the first test is done
(the first loop condition is evaluated) before the loop is executed. Also, the
condition is re-evaluated before each subsequent loop iteration (execution of the
loop body). Since the first test is done before the loop is entered, this means
that the loop may never be executed at all. This is one of the things you must
remember about a pre-test loop like the while-loop.

All loops are controlled by a (possibly compound) boolean expression, such
as the (simple, relational) expression (n <= numberOfSquares) in this pro-
gram. Because the variable n is “counting” the number of iterations of the loop
body and the loop will stop when the required number of iterations have been
performed (provided the loop is correctly coded), this is also called a count-
controlled loop.

13.4.1.3 Follow-up hands-on activities for square_integers.cpp

O Activity 1 Copy, study, test and then write pseudocode for square_integers. cpp.

O Activity 2 Copy square_integers.cpp to square_integersl.cpp and bug it in the
ways indicated below. And note once again, by the way, the manner in which
these “bugging instructions” are given. Rather than mention specific variable
names, for example, they are expressed in a way that is designed to help you
become familiar with the terminology.

a. Leave out the parentheses enclosing the loop condition.

with looping control structures (no selection) 111

b. Leave out the braces enclosing the loop body.

c. Leave out the statement that initializes the loop control variable.

d. Leave out the statement that modifies the loop control variable within the
loop body.

e. Replace the relational operator <= in the loop condition with the relational
operator <.

O Activity 3 Make a copy of square_integers.cpp called square_integers2.cpp
and modify the copy so that the values in the table are displayed in decreasing
order rather than increasing order.

O Activity4 Make a copy of square_integers.cpp called square_integers3.cpp
and modify the copy so that the table contains only values corresponding to the
even values from 2 up to a maximum value input by the user (which may or
may not itself be an even value). (Be sure, as always, that all variables in your
program have appropriate names.)

O Activity5 Make a copy of square_integers.cpp called square_integers4.cpp
and modify the copy so that it performs exactly like the original, but uses a
boolean variable called finished as the loop condition. Don’t forget that you
will have to decide exactly what finished means, you will have to initialize
it correctly, and you will have to modify it correctly in the body of the loop.
By the way, a boolean variable used in this way is often called a flag, and the
resulting loop is referred to as a flag-controlled loop. Thus we see that terms
like count-controlled and flag-controlled are not necessarily mutually exclusive
when applied to loops.

(O INSTRUCTOR CHECKPOINT 13.1 FOR EVALUATING PRIOR WORK

Note the use of
the boolean variable.

Flag-controlled loop

do...while-loop

do and while

Condition tested after
body of loop executed

Loop body must modify
loop control variable

© 0 N e U R W N =

N
A W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

112 Repeating one or more actions

13.4.2 sum_integers.cpp computes sums of integers using

a do...while-loop

//sum_integers.cpp
//Computes the sum of all integers between and including two integers
//input by the user. Illustrates a count-controlled do...while-loop.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program computes the sum of all integers in a "
"range of\nintegers entered by the user.\n\n";

int small, large;
cout << "Enter the smaller integer, then the larger: ";
cin >> small >> large; cin.ignore(80, ’\n’); cout << endl;

int numberToAdd = small;
int max = large;
int sum = O;

do

{
sum = sum + numberToAdd;
numberToAdd++;

} while (numberToAdd <= max);

cout << "The sum of all integers from " << small << " to "
<< large << " (inclusive) is " << sum << ".\n";
cout << endl;

13.4.2.1 What you see for the first time in sum_integers.cpp

e A do...while-loop, which contains:

— The C++ reserved word do used in conjunction with the reserved
word while

— A conditional expression
Once again this is the expression found within the (required) paren-
theses following the keyword while. This time it controls the termi-
nation of the loop, but not its beginning.

— A Ioop body
These are the statements to be executed on each pass through the
loop. The statements must be enclosed in braces if there is more than
a single statement in the loop body. And once again the loop body
must contain at least one statement that modifies the loop condition
appropriately if the loop is to terminate.

with looping control structures (no selection) 113

e The typical formatting for a do...while-loop Formatting a do...while-loop

Note again the level of indentation of the statements in the loop body.

13.4.2.2 Additional notes and discussion on sum_integers.cpp

In the case of sum_integers.cpp, the loop control variable is numberToAdd, and
of course it must be initialized and subsequently modified, like any other loop
control variable. Note that the do...while-loop, unlike the while-loop, is a post-
test loop. This means that the loop condition is tested at the end of the loop, Note the features of
rather than at the beginning, and it also means that the first loop iteration a post-test loop.
(i.e. the first execution of the loop body) takes place before the condition is
tested for the first time. Or, equivalently, you are always guaranteed at least
one execution of the loop body in a do...while-loop.
The particular do...while-loop in sum_integers.cpp may also be regarded as a
count-controlled loop, since the loop is essentially “counting” the values between
two limits to determine which values to add.

13.4.2.3 Follow-up hands-on activities for sum_integers.cpp

O Activity 1 Copy, study, test and then write pseudocode for sum_integers. cpp.

O Activity 2 Copy sum_integers.cpp to sum_integersl.cpp and bug it as follows:

a. Leave out the braces enclosing the loop body.

b. Leave out the statement that initializes the loop control variable.

c. Leave out the statement that initializes max.

d. Leave out the statement that initializes sum.

e. Leave out the statement that modifies the loop control variable within the
loop body.

f. Replace <= in the loop condition with <.

Accumulator, and
accumulator-controlled loop

114 Repeating one or more actions

g. Replace the <= in the loop condition with !=.

h. Rewrite the assignment to sum so that it uses the += assignment operator,
rather than the “ordinary” assignment operator =.

O Activity 3 Make a copy of sum_integers.cpp called sum_integers2.cpp and mod-
ify the copy so that the user enters the number of positive even integers (starting
with 2) that he or she wishes to sum, and the program computes and displays
the sum of that many positive even integers. (Hint: As a check, the sum of the
first 500 positive even integers is 250500, for example.)

(O INSTRUCTOR CHECKPOINT 13.2 FOR EVALUATING PRIOR WORK

O Activity 4 Make a copy of sum_integers.cpp called sum_integers3. cpp and mod-
ify the copy so that it performs as follows. First, the two values the user enters
are a start value, and a mazrimum sum. Then the program begins summing
integers, starting with start value, and stopping as soon as the sum reaches or
exceeds maximum sum. The program must then display the starting value, the
mazimum sum, the actual sum, the last value added, and the number of values
summed.

By the way, the loop control variable you will need for this program will be
the variable that is being used to sum or “accumulate” the values being added,
and the loop terminates when this value exceeds the allowed maximum. A loop
like this is sometimes referred to as an accumulator-controlled Ioop, and the
loop control variable in this case might be called an accumulator.

Typical output from your program might look like this:

Starting value 6
Maximum sum 47
Actual sum 51
Last value added 11
Number of values added .. 6

To get a feeling for what the program is supposed to do, fill in the table
below. Some values have been supplied.

Starting value 6 |10 | 3| 17 1
Maximum sum 47 160 | 4 | 139 | 5050
Actual sum 51

Last value added 11

Number of values added | 6

(O INSTRUCTOR CHECKPOINT 13.3 FOR EVALUATING PRIOR WORK

© 0 N e U oA W N e

AR A A R A W W W W W W oW W W WNNNNDNNNNNNE B BB R e e e e
Gk @ NP O D BN DR BN R O O XN OO R ®N RO O ® N0 R ® N RO

with looping control structures (no selection) 115

13.4.3 display_sequences.cpp displays character and
numerical sequences using for-loops, and also
illustrates sequential loops

//display_sequences.cpp

//Displays sequences of both characters and integers in ranges chosen
//by the user. Illustrates a count-controlled for-loop, as well as
//sequential loops and some C-style casts.

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
cout << "\nThis program displays both character and integer "
"sequences in user-chosen\nranges. For characters, it "
"assumes the user knows (from prior experience)\nthe "
"internal integer codes for the first and last character "
"of the required\nsequence.\n\n";

int first, last; //Range boundaries
int i; //Loop control variable

cout << "First, characters in \"increasing\" order.\nEnter the "
"internal integer codes for the first and last characters "
"you want:\n";

cin >> first >> last; cin.ignore(80, ’\n’);

for (i = first; i <= last; i++)
cout << char(i);

cout << "\n\nNow, integers in decreasing order.\n"
"Enter the first and last integers you want (larger first):\n";

cin >> first >> last; cin.ignore(80, ’\n’);

for (i = first; i >= last; i--)
cout << i << " "y

cout << "\n\nFinally, characters marching down the display to the "
"right in decreasing order.\nEnter the internal integer codes "
"for the first and last characters you want:\n";

cin >> first >> last; cin.ignore(80, ’\n’);

int indentLevel = 0;

for (i = first; i >= last; i--)

{
cout << setw(indentLevel) << "" << char(i) << endl;
indentLevel++;

}

cout << endl;

for-loop

for

The initialization

The test

The “modification”

Do not modify the
loop control variable

in the body of a for-loop.

Formatting a for-loop

Sequential loops

Consider which loop

18 most appropriate
for your situation.

116 Repeating one or more actions

13.4.3.1 What you see for the first time in display_sequences.cpp

e A for-loop, several in fact, each of which contains:

— The C++ reserved word for

— A set of (required) parentheses, which follows the keyword for and
contains three key items:

x A first expression which provides any necessary initialization for
the loop (including, but not limited to, the loop control variable)

* A second expression which is the conditional expression repre-
senting the loop condition and which will be tested to determine
if the loop body should be executed (before each iteration, in-
cluding the first)

x A third expression which usually performs the necessary loop
control variable modification
Although there are many variations of the C++ for-loop, it is
most convenient, and safer; to think of a for-loop as containing
these three items, separated by semi-colons, and to use a for-
loop only for those situations where you need a simple count-
controlled loop.

— A loop body, enclosed in braces when there is more than a single
executable statement, and containing the statements that are exe-
cuted during each loop iteration (Note that in the case of a for-loop
the loop body does not in general contain a statement modifying
the loop control variable, since this is handled auotmatically in a
for-loop.)

e The typical formatting for a for-loop
Note once again the indentation level of the statements in the loop body.

e Sequential loops (nothing very mysterious, just one loop after another)

13.4.3.2 Additional notes and discussion on display_sequences.cpp

The C++ for-loop, as we hinted above, is actually quite versatile and can be
used, for example, in place of any kind of while-loop. However, although any
of the three types of loops we have seen can be used in virtually any situation,
each kind of loop is better suited for use in certain situations. Typically it goes
like this:

e for-loops for simple count-controlled loops (definite iteration)

e while-loops when you may not want the loop to execute at all (i.e., zero
or more iterations) (conditional iteration or indefinite iteration)

e do...while-loops when you want at least one pass through the loop (i.e.,
one or more iterations) (also conditional iteration)

with looping control structures (no selection) 117

These are, of course, general guidelines only, but they cover a multitude of cases.

It’s not perhaps completely obvious from the preceding discussion, but it
turns out, for example, that a while-loop is often the best choice for reading
input since it is the one that easily permits the loop not to execute at all, which
is exactly what you want to happen if there is in fact no input to be read. This
sort of knowledge is the kind of information you should salt away in whatever
part of your brain you keep such things.

The question of when to use “sequential loops” is an easy one to answer:
whenever you have several tasks that must be performed one after the other,
and two or more of them each require a loop, you will need “sequential loops”.
The sequential loops shown in display_sequences.cpp are all for-loops, but this
does not have to be the case, of course.

13.4.3.3 Follow-up hands-on activities for display_sequences.cpp

The while-loop is often
best for reading input.

When to use
sequential loops

O Activity 1 Copy, study, test and then write pseudocode for display_sequences.cpp.

O Activity 2 Copy display_sequences.cpp to display_sequencesl.cpp and bug it
as follows:

a. In the first for-loop, remove i = first. (Leave the semi-colon (;) after
first.)

b. In the first for-loop, remove 1 = first;. (Removethe semi-colon as well
this time.)

c. In the first for-loop, remove i <= last.

d. In the first for-loop, remove i++.

O Activity 3 Make a copy of display_sequences.cpp called display_sequences2.cpp
and modify the copy so that the last for-loop displays the characters not “march-
ing down to the right”, but “marching down to the left” instead, with the first
character having the largest indentation and the last character (the one on the
last line) at the left margin.

O INSTRUCTOR CHECKPOINT 13.4 FOR EVALUATING PRIOR WORK

© 0 N o U oA W N e

LT T T S
AW N = O © N & ok WM RO

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

118

13.

Repeating one or more actions

4.4 rounded_average.cpp computes the rounded
integer average of all integer values on each input
line, and also illustrates nested loops

//rounded_average.cpp
//Computes the (rounded) average of all integers on each of several
//input lines. Illustrates nested loops, and C-style casts.

#include <iostream>
using namespace std;

int

{

main()

cout << "\nThis program computes the rounded average of all integer "
"values on each\nof a number of input lines. Each line of "
"integers to be averaged must be\nterminated by the value "

"-9999.\n\n";

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

int numberOfLines;
int value;

int sum;

int count;

int average;

cout << "\nEnter number of input lines, or your end-of-file "

"character to quit: ";

B

cin >> numberOfLines; cin.ignore(80, ’\n’);

while (cin)

{
for (int lineNumber=1; lineNumber<=numberOfLines; lineNumber++)
{
cout << "\nEnter integer values for line number "
<< lineNumber << " below (end with -9999):\n";
sum = 0;
count = 0;
cin >> value;
while (value != -9999)
{
sum = sum + value;
count++;
cin >> value;
}
average = int(double(sum) / count + 0.5);
cout << "The rounded average of the values "
<< "on line number " << lineNumber
<< " ig " << average << ".\n";
}
cout << "\n\nEnter number of input lines, or end-of-file "
"character to quit: ";
cin >> numberOfLines; cin.ignore(80, ’\n’);
}

cout << endl;

with looping control structures (no selection) 119

13.4.4.1 What you see for the first time in rounded_average.cpp

e The use of nested loops (a nested loop is a loop that appears within the
body of another loop)

e The declaration of a loop control variable of the for-loop within the for-
loop at the same time the variable is initialized (this may be done for any
for-loop, if appropriate, i.e., there is no connection with loop nesting)

e A sentinel-controlled loop (the innermost while-loop is terminated by a
sentinel value of —1)

e An end-of-file-controlled loop (the outermost while-loop is terminated by
an end-of-file character)

We need to say a bit more about this. This is actually a sneak preview
of a wider topic that we will come back to more than once. The point
is that the name of the input stream (cin) is being used as a boolean
variable which is true (i.e., the stream is OK) till we enter the end-of-file
character, at which point it becomes false (not OK). One of the nice
things about C++ is its ability to treat input streams in this way.

e A bit of a portability problem (see discussion below)

13.4.4.2 Additional notes and discussion on rounded_average.cpp

As this program shows, loops may be nested within other loops “several levels
deep”. Note that here, for example, we have a for-loop inside an outer while-loop
and the for-loop itself has a second while-loop as part of its body.

The general structure for nested loops looks like this:

start of first loop
part of first loop body
start of second loop
part of second loop body
start of third loop
body of third loop
... possibly other loops in here
end of third loop
more of second loop body
end of second loop
more of first loop body
end of first loop

Note that the loops do not “overlap”, and note how the indentation and
alignment make it easy to identify the various parts of each loop. Your C++
nested loops must always be formatted so that the structure is equally clear.

As for when to use a nested-loop construct, the need arises in a fairly nat-
ural way: Whenever you have a loop in which one or more of the statements
themselves need to be repeated, you are dealing with a nested-loop situation.

Nested loops

Declaration of the
loop control variable
inside a for-loop

Sentinel-controlled loops

End-of-file-controlled loops

Input stream as
a boolean variable

Portability problem

Structure of
nested loops

When to use
nested loops

Input stream true
if OK, false if not

End-of-file is
system-dependent.

How do you enter an
end-of-file character from the
keyboard on your system?

120 Repeating one or more actions

The outermost while-loop in rounded average.cpp requires some additional
comment. First note that the loop condition is simply cin, the name of the input
stream. The name of an input stream can be treated as a boolean variable which
has the value true unless something has gone wrong with the stream. What
can go wrong with an input stream? Well, if an attempt is made to read a value
and an end-of-file character (also denoted by the acronym EOF) is encountered,
the input stream will “shut down” and not provide any more input, at which
point its “boolean value” will be false, and this value can be used to terminate
the loop.

A portability problem arises here. Clearly it would be ideal if the program
could tell its user exactly what character to enter to denote the end-of-file. The
problem is, this character is not the same on all systems, and you need to know
what it is on your system in order to run this program properly.

13.4.4.3 The end-of-file character on your system

Answer

13.4.4.4 Follow-up hands-on activities for rounded_average.cpp

O Activity 4 Copy, study, test and then write pseudocode for rounded_average . cpp.
For simplicity when testing, use input with at least one data value per line.

O Activity 5 Copy rounded_average.cpp to rounded averagel.cpp and bug it as
follows:

a. Declare all variables in a single declaration statement.

b. Remove the braces enclosing the body of the outermost while-loop.

c¢. Remove the braces enclosing the body of the for-loop.

O Activity6 Make a copy of rounded average.cpp called second last.cpp and
modify the copy so that the output is not the average of the values on each
line, but the second last value on each line. Test the program with data that
always provides at least two values per line, and write the program assuming
such input.

O INSTRUCTOR CHECKPOINT 13.5 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

with looping control structures (no selection) 121

13.4.5 draw_box.cpp displays an empty box with user
chosen size, border and position
//draw_box.cpp

//Displays an empty box. User chooses the size, the border character,
//and the indentation. Illustrates sequential loops.

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{
cout << "\nThis program draws an \"empty\" box on the display. "
"Box \"height\" refers to\nthe number of lines and \"width\" "
"refers to the number of character widths.\n\n";
int width, height;
char ch;
int indentLevel;
cout << "Enter width, then height, of box: ";
cin >> width >> height; cin.ignore(80, ’\n’);
cout << "Enter character to be used for the box border: ";
cin >> ch; cin.ignore(80, ’\n’);
cout << "Enter the number of spaces to indent the box: ";
cin >> indentLevel; cin.ignore(80, ’\n’); cout << endl;
int charCount;
cout << setw(indentLevel) << "";
for (charCount = 1; charCount <= width; charCount++)
cout << ch;
cout << endl;
for (int line = 2; line <= height-1; line++)
{
cout << setw(indentLevel) << "";
cout << ch << setw(width-2) << "" << ch << endl;
}
cout << setw(indentLevel) << "";
for (charCount = 1; charCount <= width; charCount++)
cout << ch;
cout << endl << endl;
}

13.4.5.1 What you see for the first time in draw_box.cpp

This program does not show any new C++ language features. It does show how
loops (in particular, for-loops) can be used to display patterns of various kinds.
Here you see three sequential for-loops being used to draw a simple “empty”
box. Of course, both sequential and nested loops may be required in a given
program, depending on what the display requirements are.

122 Repeating one or more actions

13.4.5.2 Additional notes and discussion on draw_box.cpp

We have seen this sort of thing many times before, but you should again take a
close look at how the output from this program is positioned on the screen. As
always, though, keep in mind that this is not the way to do it, just a way.

13.4.5.3 Follow-up hands-on activities for draw_box.cpp

O Activity 1 Copy, study, test and then write pseudocode for draw_box.cpp.

O Activity 2 Copy draw_box.cpp to draw_boxl.cpp and bug it as follows:

a. First replace cin >> ch by cin.get(ch). Then remove all instances of
the statement cin.ignore(80, ’\n’); and reinsert them one at a time.
Indicate which, if any, are critical to the operation of the revised program
and which are not.

b. Replace each instance of "" with "," (i.e., replace each null string with
a string constant containing a single blank) and study the position of all
output from the program for different input values. Describe what differ-
ence, if any, this change would make in the display. (Note, by the way,
that the symbol |, is sometimes used to emphasize the existence of a blank
space.)

O Activity 3 Make another copy of draw_box.cpp called draw_box2.cpp and modify
the copy so that a second character is obtained from the user and the displayed
box is no longer “empty”, but instead its interior is filled with this second
character.

(O INSTRUCTOR CHECKPOINT 13.6 FOR EVALUATING PRIOR WORK

Module 14

Consolidation of 1/0
(including file 1/0),
selection and looping

14.1 Objectives

To understand how selection constructs and looping constructs can work
together to build programs of greater power and flexibility (by perform-
ing tests of one kind or another before, during, and/or after a loop, for
example).

To understand why we often need to perform one or more checks after a
conditional loop has terminated to determine the reason why it ended, if
that loop is controlled by a compound boolean condition.

To understand when and how to test an input stream to see if it is still
functioning properly.

To understand when and how to use embedded debugging code.

To learn how to make a program read in, at run-time, the name of file to
be used for input or output, and how to then open and use the file for
input or output.

14.2 List of associated files

positive_average.cpp computes the average of just the positive integers
entered from the keyboard.

extreme_values.cpp finds the largest negative and the smallest positive
integers entered from the keyboard.

123

The three things
a computer can do

124 Consolidation of I/0 (including file I/0), selection and looping

® odd_squares.cpp computes the squares of just the odd positive integers
entered from the keyboard.

e two_flags.cpp tries to have the user enter an integer from 1 to 3.

e count_characters.cpp counts both the capital letters and the small letters
in a textfile.

e count_characters.in contains sample input data for count_characters. cpp.

e sum odd positives.cpp computes the sum of all odd positive integers up to
a limit entered by the user.

e test_input_stream.cpp illustrates testing of an input stream.

e four characters.in is a sample input data file for Activity 3 following
test_input_stream.cpp.

e filename.cpp shows how to read in, at run-time, the name of a file, and
then open that file for input.

14.3 Overview

In the beginning, all of our programs were entirely sequential. That is, each pro-
gram started by executing the first executable statement (in the main function),
then the second, and so on in sequence until all of the executable statements
in main had been executed, at which point the program ended and returned a
value to the operating system, usually 0 to indicate success.

In the previous two Modules we saw, first, how a program could alter this
rather pedestrian way of doing things by making decisions from time to time
about which statement, or group of statements, to execute next, and then,
second, how a program could repeat one or more statements if called upon to
do so.

These three things—sequential execution, selection, and looping—constitute
the full repertoire of what a program can do, in a certain sense. But, of course,
those three actions can be combined and duplicated in a myriad of ways, and
this is what gives a computer program its power. In this Module we look at
some such combinations. The ability to produce your own such combinations
that correctly perform the required tasks in your own programs is just one of
the many skills that you need to develop on your way to becoming a good
programmer.

© 0 N o U A W N e

I S T T N T S I s
A W N =R O © N O oA W N = O

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44

Consolidation of I/0O (including file 1/0), selection and looping 125

14.4 Sample Programs

14.4.1 positive_average.cpp computes the average of just
the positive integers entered from the keyboard

//positive_average.cpp

//Finds the average of all positive integer values input by
//the user. Illustrates an EOF-controlled loop, and a test
//after the loop to make sure the input data set was not empty.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program computes the average of any number of "

"positive integer values.\nInput values may be positive, "
"negative, or zero, but non-positive values are\nsimply "
"ignored. Enter as many values as you like, then press the "
"Enter key.\nTo compute and display the avarage enter an "
"end-of-file and press Enter again.\n";

int 1i;

int numberOfPositivelntegers = 0;
int sum = O;

double average;

cout << "\nStart entering values on the line below:\n";
cin >> ij;
while (cin)
{
if (i > 0)
{
sum = sum + i;
numberOfPositivelntegers++;

}
cin >> i;
}
if (numberOfPositiveIntegers == 0)
cout << "No positive integers were input.\n";
else
{
average = double(sum) / double(numberOfPositivelntegers);
cout << "The average of the " << numberOfPositivelntegers
<< " positive integer values is " << average << ".\n";
}

cout << endl;

Decision-making
and looping
working together

Division-by-zero error

126 Consolidation of 1/0 (including file I/0), selection and looping

14.4.1.1 What you see for the first time in positive_average.cpp

This program illustrates for the first time (except for shell.cpp and any pro-
grams based on it) the use of both selection and looping constructs in the same
program.

14.4.1.2 Additional notes and discussion on positive_average.cpp

This program is our first to exhibit both decision-making and looping working
together. It uses a while-loop to read input (remember that while-loops tend to
be better for this job than either of the other two kinds of loops), and it uses a
simple if-statement in the body of the while-loop to “filter out” the values that
aren’t wanted, i.e., the non-positive values, since these are not to be included
in the average.

Following the loop there is another test which makes sure the value of the
variable numberOfPositivelIntegers is strictly greater than zero before at-
tempting to compute the average, since if it isn’t this would mean that no
positive data values had been input, and we would then have a division-by-zero
error when computing the average. It is always better to write programs that
are as robust as possible, i.e., that deal in a graceful manner, as much as pos-
sible, with things that can go wrong. Good programmers are able to anticipate
many of the things that can go wrong during program execution and write code
to deal with them if they do.

14.4.1.3 Follow-up hands-on activities for positive_average.cpp

O Activity 1 Copy, study, test and then write pseudocode for positive_average.cpp.

O Activity 2 Copy positive_average.cpp to positive_averagel.cpp and bug it as
follows:

a. Remove the statement that initializes count.

b. Remove the statement that initializes sum.

c. Remove the first instance of cin >> i; (i.e., remove what is called the
priming read for the while-loop).

d. Remove the second instance of cin >> ij;.

Consolidation of I/0 (including file I1/0), selection and looping 127

e. Change the statement that gives the variable average its value to the
statement average = sum / count;.

f. Remove the braces enclosing the body of the if-statement within the while-
loop.

g. Remove the braces following the else in the if...else-statement.

O Activity 3 Make a copy of positive_average.cpp called even_average.cpp and
modify the copy so that it averages only the positive even integers entered.

(O INSTRUCTOR CHECKPOINT 14.1 FOR EVALUATING PRIOR WORK

128 Consolidation of 1/0 (including file I/0), selection and looping

14.4.2 extreme_values.cpp finds the largest negative and
smallest positive integers entered from the
keyboard

1 //extreme_values.cpp

2 //Finds the largest negative integer and smallest integer among the

3 //input values. Illustrates a sentinel-controlled loop containing one
4 //test in its body, and followed by two sequential tests.

5

6 #include <iostream>

7 #include <climits>

8 using namespace std;

9

10 int main()

11 {

12 cout << "\nThis program determines the largest negative integer "
13 "and the smallest\npositive integer entered by the user. "

14 "Terminate input by entering 0.\n\n";

15

16 int largestNeg = INT_MIN;

17 int smallestPos = INT_MAX;

18 int newValue;

19

20 cout << "Enter your integer sequence starting on the line below:\n";
21 cin >> newValue;

22 while (newValue != 0)

23 {

24 if (newValue < 0 && newValue > largestNeg)

25 largestNeg = newValue;

26 else if (newValue > 0 && newValue < smallestPos)

27 smallestPos = newValue;

28 cin >> newValue;

29 }

30

31 if (largestNeg == INT_MIN)

32 cout << "Either no negative integers were input or the largest "
33 "was the value\n" << "of INT_MIN, i.e. " << INT_MIN << ".\n";
34 else

35 cout << "The largest negative integer was "

36 << largestNeg << ".\n";

37

38 if (smallestPos == INT_MAX)

39 cout << "Either no positive integers were input or the smallest "
10 "was the value\nof INT_MAX, i.e. " << INT_MAX << ".\n";
41 else

42 cout << "The smallest positive integer was "

43 << smallestPos << ".\n";

44 cout << endl;

45}

Consolidation of I/0 (including file I1/0), selection and looping 129

14.4.2.1 What you see for the first time in extreme_values.cpp

There are no new C++ language features in this program, but we do see the use
of two (predefined) named constants (INT_MIN and INT_MAX) from one of the
C++ standard libraries (the climits library in this case) to initialize variables.

14.4.2.2 Additional notes and discussion on extreme_values.cpp

This program contains a while-loop with a nested if-statement in its body. Note
that this nested-if construct may choose to perform neither of the two explicit
possibilities it contains. The loop is followed by two sequential tests to determine
what the loop has actually accomplished.

14.4.2.3 Follow-up hands-on activities for extreme_values.cpp

O Activity 1 Copy, study, test and then write pseudocode for extreme values.cpp.

O Activity 2 Copy extreme_values.cpp to extreme valuesl.cpp and bug it as fol-
lows:

a. Leave out the compiler directive which includes the 1imits library header
file.

b. Change the operator == in line 31 to =.

This change illustrates a very common C++ programming bug, namely,
using a single equal sign (=) when a double one (==) is required.

Remember that the single equal sign is an assignment operator, while the
double one is a relational operator. Smart compilers will warn you if you
make such a “mistake”. It is conceivable, but unlikely, that when doing
this you have not made a “mistake”, in the technical sense, but you would
certainly have made a programming-style error.

Note that when you have a variable on one side of the == and a constant
on the other, a “best practice” might be to make sure the constant is on
the left. Then, if you inadvertently use = when you meant to use ==, any
compiler will report an error since an assignment cannot be made to a
constant.

A best practice

130 Consolidation of 1/0 (including file I/0), selection and looping

O Activity 3 As we hinted above, the nested if-statement in the while-loop body
of the program in extreme_values.cpp is such that either or neither of its two
options may actually be chosen. Suppose, in the interests of readability, we
decide that the code should be made more explicit by explicitly including the
“missing” third option, i.e., that neither of the two options given is executed.
Show below the code you would add to do this, and indicate as well where you
would place that code. If you want to test the code in a program, put your
revised program in a file called extreme values2.cpp.

(O INSTRUCTOR CHECKPOINT 14.2 FOR EVALUATING PRIOR WORK

O Activity 4 Design and write a program that reads in any number of real num-
bers (as opposed to integers) and then prints out both the largest and the
smallest values seen among all input values. An additional requirement is that
no variable in the program can be given a value other than one of the values read
in. (This is just another way of saying that you are not permitted to initialize
any variable with a built-in value from one of the libraries. So, you need an
algorithm that does not require such an initialization.) Put your program in a
file called large_small.cpp.

(O INSTRUCTOR CHECKPOINT 14.3 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Consolidation of I/0 (including file 1/0), selection and looping 131

14.4.3 odd_squares.cpp computes the squares of just the
odd positive integers entered from the keyboard

//odd_squares.cpp

//Outputs squares of odd integers input by the user. Also counts and
//reports number of odd values seen. Illustrates both a count-controlled
//loop and a second counter that counts something else (odd integers).

#include <iostream>
using namespace std;

const bool DEBUGGING_ON = false;

int main()
{
cout << "\nThis program outputs the square of any odd\ninteger "
"entered, but ignores all even values.\nIt also indicates how "
"many odd values were seen.\nAll input values must be *positivex "
"integers.\n\n";

int numberOfValues;
cout << "Enter the number of data values to be entered: ";
cin >> numberOfValues; cin.ignore(80, ’\n’); cout << endl;

int i;
bool iIs0dd;
int oddCount = 0; //Initialize count of odd input values properly

for (int loopCount = 1; loopCount <= numberOfValues; loopCount++)
{

cout << "\nEnter a data value here: ";

cin >> i; cin.ignore(80, ’\n’);

iIs0dd = (i%2 == 1); //Check to see if value read is odd

if (iIs0dd)

{
cout << i << " squared is " << i*i << ".\n";
++oddCount;

}

else

cout << "That one wasn’t odd." << endl;
if (DEBUGGING_ON)

{
cout << "loopCount: " << loopCount << " "
<< "i: M < i < " "
<< "iIs0dd: " << iIs0dd <" "
<< "oddCount: " << oddCount << endl << endl;
}

}

cout << "\nThe total number of odd integers was
<< oddCount << ".\n";

cout << endl;

Embedded debugging code

Use a global constant
as an “on-off switch”
for debugging.

132 Consolidation of 1/0 (including file I/0), selection and looping

14.4.3.1 What you see for the first time in odd_squares.cpp

This program shows the use of embedded debugging code' to “turn on” or
“turn off” a program’s ability to display various quantities of interest during
execution.

14.4.3.2 Additional notes and discussion on odd_squares.cpp

So, just what do we mean by embedded debugging code? What we mean is
code that we intentionally put in our programs, as we design and build them,
for that sad day when we realize our program has a bug and we need to take
a very close look at what we have done if we expect to find out what’s wrong.
We could, of course, wait until that time before inserting such code, but if we
do we may well be in a panic state, do a hurried and quite possibly poor job of
entering this code “on the fly”, and waste more time as a result before finding
the error, if in fact we do find what is wrong.

It is therefore much better to expend, as part of the design process, some
effort toward including embedded debugging code that is for one purpose only:
displaying quantities of interest at certain points in the program’s execution so
that those values can be examined to determine whether they are correct.

There must be a way to “turn on” and “turn off” the output of this code,
since the output is not something we want to see when the program is finished
and working properly. We could insert the code when we want it, and remove it
when we don’t want it, but that would generally be more work than we would
like to do.

So, we use a global constant of data type bool (called DEBUGGING_ON here,
but this is just a programmer chosen name) which can be set to true or false,
according to whether we want the embedded debugging code to output its di-
agnostic values, or not. This constant is then used in appropriate selection
structures which control the output of the debugging code, i.e., the code that
outputs the values of interest.

In this program, note that although oddCount is initialized to 0, as it should
be, and in fact needs to be, neither i nor iIs0dd is given an initial value. Why
not? Some programmers will argue that every variable should be initialized
when declared, to make sure that no uninitialized variable is used. We do not
subscribe to that theory, since it seems to make about as much sense to use a
variable which has been given some arbitrary or “unnatural” value as it does to
use it uninitialized, and doing so is potentially just as confusing. So, if it does
not make conceptual sense to initialize a variable at the time of declaration, we
don’t do it. Besides, compilers are smart enough to warn you when you try to
use the value in an uninitialized variable, so letting them do so may be “safer”..

ISuch code can be used to help us perform a program trace.

Consolidation of I/0 (including file I1/0), selection and looping 133

14.4.3.3 Follow-up hands-on activities for odd_squares.cpp

O Activity 1 Copy, study, test and then write pseudocode for odd_squares. cpp.

O Activity2 Make another copy of odd_squares.cpp called odd_squaresi.cpp.
Then change false to true in the definition of DEBUGGING_ON. Finally, re-test
the program as in the previous activity.

O Activity 3 Copy odd_squares.cpp t0 odd_squares2.cpp and bug it as follows:

a. Replacei % 2 == 1byi % 2 == 0.

b. Remove the initialization of oddCount (but leave the declaration).

c. Move the declaration of iIs0dd from its current location to the line in
which it is used in the body of the outer for-loop.

From the previous “bugging” activities you will have observed that “slight”
errors (whether caused by lapses in logic or stemming from some other source)
can cause rather serious problems with your programs, problems that may not
be easy to find just by staring at your code. That’s when you need to take
more serious measures, by performing a trace, for example, or “turning on”
your embedded debugging code, if you have been thoughtful enough to include
it. The following two activities are designed to familiarize you with this process.

O Activity 4 Make a copy of odd_squares.cpp called odd_squares3.cpp and first
modify the copy by reintroducing the first of the “bugging” changes you tried
above (replacing i % 2 == 1 by i % 2 == 0). Test again to make sure you
know how the altered program behaves. Now change the value of the named
constant DEBUGGING_ON to true, and test once more to see the information
that the embedded debugging code provides you. Analyze the information thus
obtained to help you zero in on the problem with the program. It’s easy in
this case, of course, because you know in advance what the problem is, but you
should be able to see how the same technique would be used in situations where
that was not the case.

O Activity 5 Repeat the previous activity with another copy of odd_squares.cpp
called odd_squares4.cpp and the second bugging change above (removal of the
initialization of oddCount).

(O INSTRUCTOR CHECKPOINT 14.4 FOR EVALUATING PRIOR WORK

© 0 N e U R W N =

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

134 Consolidation of 1/0 (including file I/0), selection and looping

14.4.4 two_flags.cpp tries to have the user enter an
integer from 1 to 3

//two_flags.cpp

//Tests whether either of two conditions is satisfied. Illustrates a
//loop controlled by two flags (two conditiomns). Note that when such
//a loop ends it may be because either (or perhaps both) of the two
//conditions failed.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program tries to get the user to enter an integer "
"from 1 to 3.\nHowever, only three tries are permitted before "
"the program gives up and quits.\n\n";

bool validEntry = false; //Since there are no entries yet
bool outOfTries = false; //Since no tries have been made yet

int i;
int tryCount = 0;

while (!validEntry && !outOfTries)

{
cout << "Enter an integer in the range 1..3: ";
cin >> i;
cout << endl;
tryCount++;
validEntry = (i >= 1 && i <= 3);
outOfTries = (tryCount == 3);
if (!validEntry && 'outOfTries)
cout << "Invalid entry. Try again.\n";
}

if (validEntry)
cout << "The valid entry " << i
<< " was entered on try #" << tryCount << ".\n";
else if (outOfTries)
cout << "You ran out of tries!\n";
cout << endl;

Consolidation of I/0O (including file 1/0), selection and looping 135

14.4.4.1 What you see for the first time in two_flags.cpp
e A loop condition which is a compound boolean condition

e An example of a program which deals robustly with user input, though
only range robustness (values input must lie within a certain subrange of a
given data type), not type robustness (values input must be of the correct
data type), is actually illustrated in the program

14.4.4.2 Additional notes and discussion on two_flags.cpp

One thing to note about this program is the loop condition of the while-loop,
which is a compound boolean expression. The form of this particular compound
expression means that there are three distinct situations which will cause the
loop to terminate:

e validEntry becomes true (but outOfTries is still false).
e out0fTries becomes true (but validEntry is still false).

e Both validEntry and validEntry become true simultaneously.

Because we have different situations that may lead to loop termination, we
need to check, following the loop, to see exactly why the loop terminated and
then take appropriate action. Note also that only two of the three situations
mentioned are actually dealt with explicitly in the program.

A second thing to observe about the program is that both of the boolean
variables, validEntry and out0fTries, as well as the counter tryCount, need
to be initialized when declared, unlike i, which is just used to read values entered
by the user. If the boolean variables are not initialized properly, the while-loop
will never be entered. And if tryCount is not initialized to zero, the count of
the user’s attempts to enter a valid value will not be correct.

14.4.4.3 Follow-up hands-on activities for two_flags.cpp

O Activityl Copy, study, test and then write pseudocode for two_flags.cpp.
Among other tests you may conduct, make sure you enter data that allows you
to answer the following question: What message is output by the program if
both of the boolean variables are true when the loop terminates, and why? Be
sure to enter both parts of your answer to this question below.

Program robustness

Multiple conditions
for loop termination

Proper initialization
of boolean variables ...

and other variables!

136 Consolidation of 1/0 (including file I/0), selection and looping

O Activity 2 Copy two_flags.cpp to two_flagsl.cpp and bug it as follows:

a. Remove the initialization of tryCount (but leave the declaration).

b. Remove the initialization of validEntry (but leave the declaration).

c. Remove the initialization of out0fTries (but leave the declaration).

d. Remove the update of tryCount in the body of the while-loop.

e. Remove the update of validEntry in the body of the while-loop.

f. Remove the update of out0fTries in the body of the while-loop.

O Activity 3 Make a copy of two_flags.cpp called two_flags2.cpp and modify the
copy so that if both of the boolean variables are true when the loop terminates
the message

Wow! You entered a valid value of 7 on your very last attempt!

is printed out (in which the ? would be replaced by the actual value entered),
while if only one of the boolean variables is true when the loop terminates, the
same message is printed out that the original program would print out, and in
this case only that message is displayed.

(O INSTRUCTOR CHECKPOINT 14.5 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

Consolidation of I/0 (including file I1/0), selection and looping 137

14.4.5 count_characters.cpp counts capital letters and
small letters in a textfile

//count_characters.cpp

//Reads a file of text and reports the number of upper case (capital)
//letters and the number of lower case (small) letters on each line of
//the file. The file may contain blank lines, and may also be empty,
//but in the latter case the program says nothing.

#include <iostream>

#include <fstream>

#include <cctype> //for access to the "isupper" and "islower" functions
using namespace std;

int main()
{
cout << "\nThis program counts the number of capitals and small "
"letters on each line of\na textfile. If no output is shown "
"below, make sure the input file is available\nand is non-empty,
"since no message reporting either its absence or the fact\n"
"that it is empty is displayed.\n\n";

const char NEW_LINE = ’\n’;

ifstream inFile;
int lineCount = O;
int upperCount;
int lowerCount;
char ch;

inFile.open("in_data"); //Assume file is present; no error
//message is displayed if it isn’t
while (inFile) //Loop terminates when end-of-file reached
{
inFile.get(ch); //Read a character (unless there are none)
if (inFile) //Process character (if one actually read)
{
++lineCount;
upperCount 0;
lowerCount 0;
while (ch != NEW_LINE) //Loop terminates at end-of-line
{

//How could the if...else-statement below be rewritten to
//improve "efficiency", assuming more lowercase letters
//than uppercase letters in the input data?
if (isupper(ch))
++upperCount;
else if (islower(ch))
++lowerCount;
inFile.get(ch);
}
cout << "Line " << lineCount << " contains "
<< upperCount << " capitals and "
<< lowerCount << " small letters.\n";
}
}

cout << endl;

Determining the case
of a character

Reminder: Continue to
increase your knowledge
of what’s available from
your C++ libraries.

I N R S O

138 Consolidation of 1/0 (including file I/0), selection and looping

14.4.5.1 What you see for the first time in count_characters.cpp

e The inclusion of the cctype library header file, for access to the functions
isupper () and islower (), which can be used to determine if a letter is
upper case or lower case (respectively)

e The definition of the end-of-line character \n as a named constant (i.e.,
a programmer-defined constant)

e Nested loops combined with tests to read lines of input as characters, one
at a time, and perform some analysis on the characters as they are read

14.4.5.2 Additional notes and discussion on count_characters.cpp

Note the convenience of having built-in functions like isupper () and islower ()
to use in situations like that shown this program. If you are going to be a “real-
world” C++ programmer, it is important that you become familiar with the
C++ standard libraries, so that if you need a function that is readily available
from one of those libraries you don’t go to the trouble of writing your own
version of that function.

The initializations, as always, are important, and here we have a somewhat
subtle, and critically important, observation to make. Note that 1ineCount is
initialized in its declaration, but upperCount and lowerCount are not . Why
not? Well, they could both have been initialized to 0 in their declarations,
and no harm would have been done, but that might have lulled us to sleep and
caused us to forget that each of these variables must also be initialized to 0 before
processing each line, and hence before each execution of the inner while-loop.

14.4.5.3 Follow-up hands-on activities for count_characters.cpp

O Activity 1 Copy, study, test and then write pseudocode for count_characters. cpp.
Shown below are the contents of a supplied data file for this program called
count_characters.in, which you can copy and use in your testing, but you should
also create some additional data files of your own to try.

Contents of the file count_characters.in are shown between the heavy lines:

This is line One of THE filE.
Here IS line two.
It doesn’t matter wHeRe we StarT a line.
or finish one, FORTHATMATTER...

Note that blank lines are 0K too.

Consolidation of I/0 (including file I1/0), selection and looping 139

O Activity 2 Copy count_characters.cpp to count_charactersl.cpp and bug it as
follows:

a. Comment out the current initializations of upperCount and lowerCount
temporarily, and initialize each one to 0 only in its declaration.

b. Replace each instance of the input statement inFile.get (ch); with the
input statement inFile >> ch;.

O Activity 3 Make a copy of count_characters.cpp called count_characters2.cpp
and modify the copy so that the program performs exactly as before but does
not use isupper () or islower () (or any other library function) to do what each
of these functions does. That is, make believe you don’t know these functions
exist.

O Activity 4 What is your answer to the question asked in the comments oppo-
site the inner while-loop in count_characters.cpp? Show your rewritten code
below. If you wish to try your code in a program, put this revised version of
the program in a file called count_characters3.cpp.

(O INSTRUCTOR CHECKPOINT 14.6 FOR EVALUATING PRIOR WORK

O Activity5 Make another copy of the file count_characters.cpp and call it
count_characters4.cpp. Modify the copy so that in addition to the output that
the program already produces, it also counts and displays similar information
on the number of blank spaces, digit characters and punctuation characters in
the file. Find and use suitable functions for this from the C++ standard library.

(O INSTRUCTOR CHECKPOINT 14.7 FOR EVALUATING PRIOR WORK

140 Consolidation of 1/0 (including file I/0), selection and looping

14.4.6 sum_odd_positives.cpp computes the sum of all
odd positive integers up to a limit entered by the

user
1 //sum_odd_positives.cpp
2 //Sums the odd integers from 1 to a value input by the user.
3 //Illustrates a variable local to a block.
4
5 #include <iostream>
6 using namespace std;
7
8 int main()
o A
10 cout << "\nThis program finds the value of the sum of all odd "
11 "positive integers from 1\nto an integer input by the user "
12 "(inclusive, if the integer input is odd).\nTerminate by "
13 "entering a non-positive integer.\n\n";
14
15 int sum = 100 + 20 + 3; //This is the first "sum".
16 cout << "QOuter (fixed) sum: " << sum << "\n\n";
17
18 int j;
19 cout << "Enter an integer: ";
20 cin >> j; cin.ignore(80, ’\n’);
21 while (j > 0)
22 {
23 int sum = 0; //This is the second "sum".
24 int i = j;
25 while (i > 0)
26 {
27 if %2 == 1)
28 sum = sum + i; //Which "sum" is this, and why?
29 --i;
30 }
31 cout << "Inner (varying) sum of odd integers, "
32 "from 1 to " << j << " is " << sum << ".\n";
33 cout << "\nEnter another integer: ";
34 cin >> j; cin.ignore(80, ’\n’);
35 }
36
37 cout << "\nOuter (fixed) sum: " << sum << endl;
38 cout << endl;
30}

14.4.6.1 What you see for the first time in sum_odd_positives.cpp

But just because it can be This program shows that a variable (namely, sum here) may be declared twice
done does mot mean that it (or more times, for that matter) inside a main function, under appropriate
should be done. circumstances.

Consolidation of I/0 (including file I/0), selection and looping 141

14.4.6.2 Additional notes and discussion on sum_odd_positives.cpp

If you study the output of this program, the evidence is quite strong that we
do indeed have two different variables named sum in the program, since a first
sum is initialized to 123 (i.e., 100 + 20 + 3), then a second sum is declared,
initialized to 0, and used to compute the sums of odd integers, and yet when we
output the value of sum one final time, the original value of 123 shows up again.

So, what’s going on? When sum is re-declared inside the outer while-loop (in
line 23) with the statement int sum = 0;) we get an entirely new and distinct
variable called sum which is local to the block within which it is declared (the
body of the outer while-loop), and is not accessible (or visible, or known) outside
that block.

The whole question of local variables vs. global variables comes up again in
the context of functions, which we deal with in subsequent Modules.

14.4.6.3 Follow-up hands-on activities for sum_odd_positives.cpp

Local vs. global variables

O Activity 1 Copy, study, test and then write pseudocode for sum_odd_positives.cpp.

O Activity 2 Test the program with enough different input data values so that
you can make a pretty good guess at what must replace the 777 in the following
statement:

If n is an odd positive integer, then 1 + 3 + 5 + ... + n = 777,

Now write a sentence that does not involve any formulas but that describes the
relationship that you have deduced above.

O Activity 3 Copy sum_odd positives.cpp tO sum_odd positivesl.cpp and bug it
as follows:

a. Remove the first declaration and initialization of sum.

b. Remove the second declaration and initialization of sum.

O Activity4 What is the answer to the question asked in the comments to the
right of the inner while loop?

Q INSTRUCTOR CHECKPOINT 14.8 FOR EVALUATING PRIOR WORK

142 Consolidation of I/0 (including file I/0), selection and looping

14.4.7 test_input_stream.cpp illustrates how to test an
input stream to determine if it is still functioning

properly

1 //test_input_stream.cpp

2 //Illustrates how to test the input stream.

3

4 #include <iostream>

5 #include <fstream>

6 using namespace std;

7

8 int main()

o o

10 cout << "\nThis program tests a file input stream in certain ways.\n"
11 "It will either open and read a file, reporting the values it "
12 "found.\nOr, it will report an error of some kind.\n";
13

14 int i1, i2;

15

16 ifstream inFile;

17 inFile.open("in_data");

18 if (!inFile)

19 {

20 cout << "\nError: Input data file not found ..."

21 "\nCreate data file and run program again.\n";

22 cout << endl; //Why have this statement?

23 return 1;

24 }

25

26 inFile >> il >> i2;

27 if (!'inFile)

28 {

29 if (inFile.eof())

30 {

31 cout << "\nError: End of file reached before "

32 "all data read.\n";

33 cout << endl; //Why have this statement?

34 inFile.close();

35 return 2;

36 ¥

37 else

38 {

39 cout << "\nError: Input data improperly formatted.\n";
10 cout << endl; //Why have this statement?

41 inFile.close();

42 return 3;

43 ¥

44 }

45 inFile.close();

46

a7 cout << "\nThe file was actually read. The values in it were:\n";
48 cout << " il: " < il <" i2: " << i2 << endl << endl;
49 return 0O;

Consolidation of I/0 (including file I/0), selection and looping 143

14.4.7.1 What you see for the first time in test_input_stream.cpp

The testing of the “state” of an input file stream for various potential
error conditions

The testing of an input file stream to see if the end of the file has been
reached (i.e., to see if the end-of-file character has been encountered while
attempting a read operation)

The use of the statement return 7;, where 7 is some small positive integer
whose value will be returned to the caller of this program to indicate the
nature of an error, if one occurred

Note that a different return-value can be used for each kind of problem that
might occur. Now you can see why it makes sense to choose 0 to indicate
“success” (the absence of all errors), if we are going to use different positive
integer values to differentiate the potential error conditions.

14.4.7.2 Additional notes and discussion on test_input_stream.cpp

Input and output of data from a program is an area of much potential difficulty,
and hence an area that you should give special attention when you are designing
and writing your programs. You should not think for a moment that the testing
you see in this program covers all of the things that might go wrong when you
are using textfiles for input and output. Again, the best advice is simply this:
Be vigilant!

14.4.7.3 Follow-up hands-on activities for test_input_stream.cpp

Testing the state of
of an input file stream

O Activity 1 Copy, study, test and then write pseudocode for test_input_stream.cpp.
There are four distinct situations in which you want to make sure the program
behaves properly:

The input file simply doesn’t exist.
The input file exists, but does not contain enough data.

The input file exists, and contains “enough” data, but some of the data is
bad.

The input file is as it should be, i.e., it exists and contains the right amount
of the right kind of data.

Make sure you provide suitable versions of the input file to exercise all four
options during your testing.

144 Consolidation of I/0 (including file I/0), selection and looping

O Activity 2 Copy test_input_stream.cpp tO test_input_streaml.cpp and bug it
as per the items listed below. These changes may cause your program not to
compile or to behave improperly when it runs. If a change does not cause a
compile-time error and lets the program run, then begin your testing with a
properly formatted file and move one by one through the variations mentioned
in the previous activity.

a. Remove the outer parentheses from (inFile.eof()) in line 29.

b. Remove the set of braces from lines 28 and 44.

c. Remove the set of braces from lines 30 and 36.

d. Remove the set of braces from lines 38 and 43.

O Activity 3 What is the answer to the question asked is the comments in this
program? (It’s the same answer in all three cases.)

O Activity 4 Design and write a program that will read from an input textfile
the first four characters on each of the first two lines of the file, and display
those characters on one line of the screen. In the output there must be a space
between the first four characters and the second four characters, and the line
containing the output on the screen must be preceded by, and followed by, a
blank line.

Each line of the input file may or may not contain characters other than the
ones your program is to read. Any such additional characters should simply be
ignored.

Place your program in a file called four_characters.cpp; then compile, link,
run and test it, in the first instance, with the sample file four_characters.in,
which contains the two lines of data shown below, in which both SEND and CASH
begin in the first column on the line (and all of the text on each of the two lines
is actually in the data file).

Consolidation of I/0O (including file 1/0), selection and looping 145

Contents of the file four_characters.in are shown between the heavy lines:

SEND <-- First line (contains a verb in this case)
CASH <-- Second line (contains the object of the verb)

When this is the input file, your program should display the following line of
text (preceded by, and followed by, a blank line):

SEND CASH

Your program must also respond appropriately if the input file is missing
or does not contain enough data, and you must test it for these possibilities as
well.

(O INSTRUCTOR CHECKPOINT 14.9 FOR EVALUATING PRIOR WORK

146 Consolidation of 1/0 (including file I/0), selection and looping

14.4.8 input_filename.cpp shows how to read in the name
of an input file at run-time

1 //input_filename.cpp

2 //Reads the name of an input file from the user. Only an input

3 //file is used, but the same approach applies to output files.

4

5 #include <iostream>

6 #include <fstream>

7 #include <string> //--Include the "string" header file

8 using namespace std;

9

10 int main(Q)

IR §

12 cout << "\nThis program asks the user for the name of a file, then "
13 "displays the contents\nof that file on the screen. It continues "
14 "to ask for the names of files and to\ndisplay their contents "
15 "until the user terminates the program by entering an\n"

16 "end-of-file character. Be sure to enter both the file name and "
17 "the extension.\nActually, you can also enter a full pathname to "
18 "a file, or use a logical name\nname as part of the file "

19 "designation, if your system permits such a thing.\n\n";

20

21 char ch;

22 string fileName; //--Declare a variable of type "string"

23 ifstream inFile;

24

25 cout << "Enter name of first file, or "

26 "end-of-file to quit entering filenames:\n";

27 cin >> fileName; //--Read in the name of the file

28 while (!cin.eof())

29 {

30 inFile.open(fileName.c_str()); //--Convert C++ string to C-string
31 if (inFile) cout << "\nThe contents of " << fileName << " are:\n";
32 inFile.get(ch);

33 while (!inFile.eof())

34 {

35 cout << ch;

36 inFile.get(ch);

37 }

38 inFile.close();

39 inFile.clear();

40 cout << endl << endl;

41 cout << "Enter name of next file, or "

42 "end-of-file to quit entering filenames:\n";

43 cin >> fileName;

44 }

45 //When we come out of the above loop, cin has been "shut down" by

46 //the entry of the end-of-file. If more input from cin is required,
a7 //cin must be "cleared", or reset, as follows:

48 cin.clear(); //Check program behavior with this line removed!

49 int i;

50 cout << "\nNow enter an integer: ";

51 cin >> i; cin.ignore(80, ’\n’);

52 cout << "The integer entered was " << i << ".\n";

53

54 cout << endl;

Consolidation of I/0 (including file I1/0), selection and looping 147

14.4.8.1 What you see for the first time in input_filename.cpp

Before reading the following, take another look at the the program, especially
the lines marked with comments introduced by //--, and then look for:

e The inclusion of the string header file and the declaration of a variable
of data type string, which is provided by that header file

Such a variable is capable of holding a “string value”. We have known for
some time what a string value, or string literal, is— “Hello, world!” is one
example—but till now we have only had variables that could hold a single
character at a time (i.e., char variables).

e Reading a string value from the keyboard into a string variable in memory

Actually, when we use cin to read a string value, we must be sure there
is no whitespace in the string we wish to read. This is OK here, as long
as the name of the file we are reading does not have any whitespace in it.
This is frequently the case, and on some systems it may be forbidden to
have whitespace in the name of a file.

e Converting the string representing the name of the file to an alternate
(C-string) form so that it can be used by the open() function

This is perhaps the most mysterious part of the process and you might
wonder why any “conversion” has to take place. Ideally, we should be able
to use

inFile.open(fileName) ;

directly. Perhaps, in fact, this will work on your system, but the form we
have given should work on all systems. The form to which fileName is
converted is called a C-string, a topic to which we will return when we
examine strings in more detail, but we leave it at that for now.

e Using cin.clear() and inFile.clear() to “clear” the two input streams
for re-use after they have been “shut down”, or “closed”

14.4.8.2 Additional notes and discussion on input_filename.cpp

This entire program is really a sneak preview of the string data type, since
everything else in the program, with the exception of clear(), has been seen
elsewhere. We do not discuss string variables in any detail here, but introduce
the notion just because it is so convenient to be able to have a program read in
the name of a file at run-time and then open and work with that file. Otherwise
we are forced to “hard wire” the actual name of the file into the source code of
the program or use some other (and probably system-dependent) technique.

So, the main thing to take away from this program is the usage pattern, i.e.,
the steps involved in setting up a variable to receive a filename from the user at
run-time and then use that file for either input or output. The program shows
only the case of an input file, but the analogous changes needed for the case of
an output file should be obvious.

string header file
and declaration of
a string variable

Reading a string value
into a string variable

Watch out for this!

Clearing a file
variable for “reuse”

A best practice

Based on shell.cpp

148 Consolidation of 1/0 (including file I/0), selection and looping

The other idea to take away is the fact that once an input stream—the
keyboard in this program, but the same applies to an input file stream as well—
has encountered an end-of-file it will no longer accept input. This is fine as long
as the program is finished reading input at that point. But, if the program must
read additional input via that input stream, then the stream must be “cleared”.
Hence the use of cin.clear() in this program, for example.

14.4.8.3 Follow-up hands-on activities for input_filename.cpp

O Activity 1 Copy, study, test and then write pseudocode for input_filename.cpp.
Keep the following in mind when you are testing this program. First you should
use it only to display textfiles. Second, it will display a textfile of any size but
there’s not much point in using it to display a file with more lines than will fit
comfortably on your screen, since you won’t be able to see anything but the last
part of the file without scrolling backward.

O Activity2 Copy input_filename.cpp to input_filenamel.cpp and then bug it
as follows:

a. Remove the compiler directive which includes the string header file.

b. Remove the declaration of fileName.

c. Replace fileName.c_str() with fileName.

d. Remove the statement inFile.close() ;.

e. Remove the statement cin.clear();.

O Activity 3 Make a copy of input_filename.cpp and call it file_copy.cpp. Then
modify the copy so that it reads in the names of two files. The first is to be the
source, and the second the destination, and the program must copy the contents
of the source file to the destination file. The user must be able to do this for as
many source/destination file pairs as desired before quitting.

(O INSTRUCTOR CHECKPOINT 14.10 FOR EVALUATING PRIOR WORK

Module 15

Programmer-defined
value-returning functions

15.1 Objectives

e To understand each of the following terms in the context of a programmer-
defined value-returning function other than main:

— function definition, function declaration, and function prototype
— function header and function body

— function return-type and function return-value

— function call (i.e., function invocation)

— declaration order, call order (i.e., invocation order) and execution
order of a function

— function parameter and function parameter list
— function interface

— formal parameter and actual parameter

Sometimes an actual parameter is called an argument, in which case
a formal parameter might be called simply a parameter.

— function pre-conditions and post-conditions

e To understand the analogy between a programmer-defined function that
returns a single value and the usual mathematical functions available from
the cmath library.

e To understand how the principle of declare before you use applies to the
declaration and use of functions.

e To understand the difference between the declaration order, the call order
(i.e., the invocation order), and the execution order of a group of functions.

149

So far our programs
have been quite “simple”.

But they’re getting more

complex, and we humans
need help when managing
complerxity.

150 Programmer-defined value-returning functions

e To understand why the caller of a function may need to pass information
to the function at the time of the call, and why the caller may want the
called function to “return” information to the caller when it finishes.

e To understand why parameters are needed and how they are used.

e To understand what is meant by a value parameter and how it relates to
the conceptual notion of an in-parameter.

e To understand what is meant by the scope of a variable.
e To understand what is meant by the lifetime of a variable.

e To understand what is meant by a local constant and a local variable in
a function.

e To learn some style conventions for coding and documenting functions.

15.2 List of associated files

e ftemp to_ctempl.cpp converts a Fahrenheit temperature to Celsius via a
value-returning function (first version).

e ftemp_to_ctemp2.cpp converts Fahrenheit temperatures to Celsius via a
value-returning function (second version).

15.3 Overview

All programs in previous Modules contained just a single programmer-defined
function, namely the main function. All of them were also very small programs,
generally under a page in length. Such short programs have the advantage of
simplicity, but the disadvantage of not being able to do very much. They can
illustrate very well the new features of the language that we wish to discuss,
or show us some particular aspect of input, output, or programming style, but
beyond that their functionality is limited. To do anything really useful we are
going to need larger—and therefore more complex—programs.

Because humans are not very good at managing complexity, we need to use
whatever tools we can find to help us keep our programs as simple as possible.
One of the ways of reducing the complexity inherent in large programs is to
divide the code into “logical chunks”, each of which is self-contained in the
sense that, taken as a whole, it performs a single task, and we need only look
at the “logical chunk” of code itself to see what it does and how it does what it
does. That is, we don’t have to go searching through the rest of the program to
see the complete story on the chunk of code that currently has our attention.

Actually, we have been doing this since the beginning, if only in a very
simple way, by separating the “logical chunks” of the main function by vertical
whitespace (one or more blank lines). We could continue to place all of the code

Programmer-defined value-returning functions 151

for our bigger and bigger programs in the main function, and continue to use
whitespace to separate the logically distinct parts of our code. But, if we did
80, it would not be too long before things would get out of control and we would
find it difficult to understand exactly what this one huge function was doing
much of the time. The problem would be, you see, that the one function (main)
would be doing too many things.

Thus we come to the notion that it might be a good idea to add more
programmer-defined functions to our programs (over and above main), each
of which will be designed to perform one simple task well (i.e., each one will
encapsulate the procedure required to perform that task). The idea is to be
able to collect the code that performs a particular task into a separate entity
(a programmer-defined function, in fact), give it a name, and then call upon
this entity to perform its task whenever we want to, simply by using its name
(i-e., by calling, or invoking, the function). Illustrating just how we do all this,
and the terminology, details, and pitfalls of so doing, form a major part of the
material in this Module, as Modules 16 and 17.

As we will see when we do this, various possibilities arise. A function may be
able to perform its task with no additional information from outside itself. If so,
it will be a function with no parameters. On the other hand, it may be that the
function will need one or more additional pieces of information to be supplied
to it when we invoke the function, in order to complete its task. If so, then
the function will have one or more parameters in its parameter list. Similarly,
when a function finishes its task, it may be required to pass one or more pieces
of information back to its caller. Often, if there is just one piece of information
to be returned by the function, this will be sent back as the return-value of the
function. Other times, and almost always when there is more than one value to
be returned, values are sent back via reference parameters, which is discussed
in Module 16.

This is quite a bit of terminology, and you should re-read it several times
as you look over the various sample programs and the discussions that follow
each of them, in this and in the other Modules dealing with functions. It is
absolutely critical to the study of programming to understand the passing of
information to and from functions via the parameters in their parameter lists.

Two other important concepts you need to be thinking about as you work
through these Modules are the scope of a variable (the region of a program
where the name of the variable is meaningful) and the lifetime of a variable (the
portion of program execution time during which memory has been allocated for
the variable). Both of these notions are actually somewhat more general, in
that they apply to C++ entities other than variables, but it is with variables
that we shall be most concerned.

We begin, in this Module, by looking at functions defined by the programmer
for calculating and returning a single value. Such functions are analogous to the
mathematical functions that we looked at earlier and which we use by including
the necessary C++ libraries. Not every function we need is available from a
library, however, which is why we often have to write our own.

A function should perform
a single task well.

The rest of a program
communicates with a

function via (through)
its parameter list.

Variable scope and
variable lifetime

© 0 N O U A W N e

[
S)

15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

152 Programmer-defined value-returning functions

15.4 Sample Programs

15.4.1 ftemp_to_ctempl.cpp converts a Fahrenheit
temperature to Celsius with a value-returning
function

//ftemp_to_ctempl.cpp
//Converts a Fahrenheit temperature to Celsius.

#include <iostream>
using namespace std;

int CelsiusTemp(double fTemp)

{
const double C_DEGREE_PER_F_DEGREE = double(5) / double(9);
double cTemp = (fTemp - 32) * C_DEGREE_PER_F_DEGREE;
if (cTemp >= 0)
return int(cTemp + 0.5);
else
return int(cTemp - 0.5);
}

int main()
{
cout << "\nThis program converts a Fahrenheit temperature to "
"an equivalent Celsius value.\nBoth values are reported in
"rounded form.\n\n";

double fTemp;
cout << "Enter your Fahrenheit value here: ";
cin >> fTemp; cin.ignore(80, ’\n’);

//Round the Fahrenheit temperature to the nearest integer
if (fTemp >= 0)

fTemp = int(fTemp + 0.5);
else

fTemp = int(fTemp - 0.5);

cout << "\nFahrenheit Temperature: " << fTemp
<< "\nEquivalent Celsius Value: " << CelsiusTemp(fTemp);
cout << endl << endl;

Programmer-defined value-returning functions 153

15.4.1.1 What you see for the first time in ftemp_to_ctempl.cpp

e A programmer-defined value-returning function other than main Value-returning functions

This is a function written by the programmer which contains a return
statement and which “returns” a value to the caller of the function. In
this case, the function main calls the function CelsiusTemp.

This method by which a function returns a value to its caller is different
from, and must not be confused with, the use of a reference parameter,
which we discuss in Module 16. Both have their uses and their place in
the grand scheme of things.

The notion of a value-returning function in C++ is consistent with the

classical mathematical notion of a function returning a single value when it Analogy with

is called, or “used”, and you will not go wrong if you think of this analogy mathematical functions
and use a value-returning function whenever you need a function to return

a single value. The implicit part of this rule of thumb says that whenever

you need a function to do something else, do not use a value-returning

function. In fact, you should then use a void function, another concept we

deal with in Module 16. Also implicit in this is that if you need a function

to return two values, you should not be trying to use a value-returning

function either, since a value-returning function only returns one value.

By the way, our main function is, of course, also a value-returning function main is also a
which returns an integer to its caller (i.e., to the operating system). value-returning function.

A programmer-defined value-returning function, like any other function, Parts of a function
including main, is established by a function definition, which in turn con-

sists of a function header, followed by the corresponding function body (a

block of code enclosed in braces and containing the executable statements

to be performed when the function is called, i.e., invoked).

Each function header begins with the return-type of the function, i.e.,
the data type of the return-value of the function (int in the case of
CelsiusTemp in this program). This is followed by the programmer-chosen
name of the function (CelsiusTemp), which in turn is followed by a set
of parentheses that are either empty, or enclose the parameter list of the
function (a list of data-type/variable-name pairs, separated by commas if
there are two or more pairs). In this function there is only one parameter
(fTemp) of type double. Each variable-name in one of these pairs is a
parameter of the function, and is used either to pass information into the Kinds of parameters
function when the function is called (an in-parameter), to send informa-
tion back from the function when the function has finished executing (an
out-parameter), or both (an inout-parameter).

In-parameters
will normally be
value parameters.

Formal and
actual parameters

Named constants
within functions

Scope of a named constant

Local variables
within functions

154

Programmer-defined value-returning functions

e A value parameter, which is a conceptual in-parameter

Information may be passed into a value-returning function when it is called
so that the information can be used inside the function by the function
to compute the value it will return. A parameter used in this way is,
conceptually, an in-parameter since it sends information into the function,
and will normally be implemented by using a value parameter.

When a function uses a value parameter, it means that the function will
make a copy of the value that is passed to the function when the function is
used. The original value is therefore not affected by anything that happens
to the passed value “inside” the function. By default, all parameters are
value parameters.

In this program, the value contained in £Temp in main is passed into the
function CelsiusTemp via a value parameter when main calls CelsiusTemp.

Instances of both a formal parameter and an actual parameter

The distinction between these two terms is relatively easy to make. A
parameter that appears in a function definition is a formal parameter,
while a parameter that appears in a function call is an actual parameter.

The formal parameters in the parameter list of the function definition
indicate what information must be passed when a call is made to that
function. The corresponding actual parameters (which may, in the case of
a value parameter, be literal values, variables or even expressions) supply
the actual information to be used when a call is actually made.

In this program the formal parameter and the actual parameter of the
function CelsiusTemp have the same name (namely, £Temp), but this does
not have to be the case.

The definition of a named constant within a programmer-defined function

Defining a constant inside a function makes that constant local to the
function, and not accessible outside that function. This is the way it
should be since the constant is only needed and used within the function.
This situation is also expressed by saying that the scope of the constant
is restricted to the function.

In this program the named constant is C_DEGREE_PER_F_DEGREE.

The declaration and initialization of a local variable within a programmer-
defined function

The same comments made above about the named constant apply again
here. Note as well that both the named constant and the variable defined
locally within the function only exist during the call to the function. We
express this by saying that the lifetime of the local variable cTemp, for
example, is the duration of the function call. That variable did not exist
before the function call, and does not exist after the function call has
terminated.

Programmer-defined value-returning functions 155

In this program the name of the local variable in the CelsiusTemp function
is cTemp.

e A function call to a programmer-defined value-returning function

The function CelsiusTemp that is defined in this program is also called
(i.e., invoked) once in the program, by the main function. In general, of
course, any function (except main) can be called any number of times, and
a given function may be called by any other function (not just by main)
if the situation requires it.

If the program is structured like this one (i.e., with the function definition
preceding main), then the requirement of define before using is clearly
satisfied. As we will see in the next sample program of this Module, the
use of function prototypes alters this requirement somewhat, to declare
before using, and is useful for other reasons, so in fact we normally do not
structure our programs in the way we see here. Stay tuned for the update.

15.4.1.2 Additional notes and discussion on ftemp_to_ctempl.cpp

Some remarks are in order on how (or where) a value-returning function is used
(or called). If you look at where the call to the value-returning function in
ftemp_to_ctempl.cpp appears, you will see that it appears in the middle of a
cout statement as one of the items to be output. Why is this? It’s because
the call to the function simply returns a value (it is, after all, a value-returning
function) and it is this value that the cout statement outputs.

Which is not to say that value-returning functions only appear in cout
statements. However, what is true is that value-returning functions should only
be called (i.e., should only appear) in those locations where it would make sense
for any value of the data type that the function will return to appear.

The name of a value-returning function, and the purpose for which the value
returned is likely to be used, are analogous to how a variable or constant is
named and how a variable or constant is used. Thus the naming convention
applied to value-returning functions is similar to that for naming variables—
all lower case letters except for capitals at the start of the second and any
subsequent words in the variable name—but a function name also starts with a
capital letter, according to our particular naming conventions.

15.4.1.3 Follow-up hands-on activities for ftemp_to_ctempl.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design
tree diagram for ftemp_to_ctempl.cpp. When testing, try at least the following
Fahrenheit values as input: 212, 32, 0, 98.6, and —40

Using a function
means “calling” or
“invoking” the function.

Understand the principle
of having to “describe”
something before using it,
by definition or declaration.

Placement of the call to
a value-returning function

Naming and capitalization
conventions for a
value-returning function

156 Programmer-defined value-returning functions

O Activity2 Copy ftemp_to_ctempl.cpp to ftemp_to_ctempla.cpp and bug it as
follows:

a. Replace int by char as the return-type of the function in the function
definition.

b. Replace double(5) / double(9) by 5/9 in line 10.

c. Interchange the order of the two functions.

d. Remove the definition of the function CelsiusTemp.

e. Replace each occurrence of the identifier £Temp in the definition of the
function CelsiusTemp with fahrTemp.

O Activity 3 Make a copy of ftemp_to_ctempl.cpp called ctemp_to_ftempl.cpp and
revise the copy so that it works in an analogous way but performs conversions
in the other direction, i.e., from Celsius to Fahrenheit. Be sure to make all
appropriate changes, including identifier names and comments.

(O INSTRUCTOR CHECKPOINT 15.1 FOR EVALUATING PRIOR WORK

Programmer-defined value-returning functions 157

15.4.2 ftemp_to_ctemp2.cpp contains a function
prototype and function documentation but
performs just like ftemp_to_ctempl.cpp

//ftemp_to_ctemp2.cpp
//Converts a Fahrenheit temperatures to Celsius.

#include <iostream>
using namespace std;

int CelsiusTemp(double fahrenheit);

© 0 N e U oA W N e

int main()

{

o e
[CEES S

cout << "\nThis program converts a Fahrenheit temperature to "
"an equivalent Celsius value.\nBoth values are reported in
"rounded form.\n\n";

= e
o os W

-
o

double fTemp;
cout << "Enter your Fahrenheit value here: ";
cin >> fTemp; cin.ignore(80, ’\n’);

[
S © ®

//Round the Fahrenheit temperature to the nearest integer
if (fTemp >= 0)

fTemp = int(fTemp + 0.5);
else

fTemp = int(fTemp - 0.5);

[CE IV
NI R

25
26 cout << "\nFahrenheit Temperature: " << fTemp

27 << "\nEquivalent Celsius Value: " << CelsiusTemp(fTemp);
28 cout << endl << endl;

20}

30

31

32 int CelsiusTemp(/* in */ double fahrTemp)

33 //Pre: "fahrTemp" contains a valid Fahrenheit temperature,

34 // which may be an integer or real quantity

35 //Post: Return-value of the function is the equivalent Celsius value,
36 // rounded to the nearest integer

37 o

38 const double C_DEGREE_PER_F_DEGREE = double(5) / double(9);
39

40 double cTemp = (fahrTemp - 32) * C_DEGREE_PER_F_DEGREE;

41

42 if (cTemp >= 0)

43 return int(cTemp + 0.5);

44 else

45 return int(cTemp - 0.5);

46 }

Function prototypes

Placement of
function prototypes

Function documentation

Pre-conditions and
post-conditions

Function interface

C-style comments are
required in this situation.

Many different programs
may have exactly the same
user interface.

158

Programmer-defined value-returning functions

15.4.2.1 What you see for the first time in ftemp_to_ctemp2.cpp

e A function prototype, which consists of the function header followed by a

semi-colon

Function prototypes are generally placed near the beginning of the file (be-
fore main) and effectively take care of the “declare before use” requirement
without having the full function definition in that location. The function
header (without the body) is all the compiler needs to have seen in order
to tell whether any later call to the function is properly made. Likewise,
the prototype of a function will be informative to a human reader as well.

Function documentation, including pre-conditions and post-conditions in
comments following the function header, as well as a comment in the
parameter list indicating the direction of flow of the information contained
in the parameter

The pre-conditions and post-conditions of a function are a critical part
of that function’s documentation. The pre-conditions tell the user of
the function what must be true before the function is called. The post-
conditions tell the user of the function what will be true after the function
has finished executing.

The interface to a function consists of its name, its return-type, its pa-
rameter list, and its pre-conditions and post-conditions.

Use of a C-style comment in a location where a C+-+ comment (with //)
could not be used

15.4.2.2 Additional notes and discussion on ftemp_to_ctemp2.cpp

This program behaves exactly like its predecessor in ftemp_to_ctempl.cpp from

the user’s point of view. In fact, the user interface (what the user sees) is

identical. Any differences, then, are behind the scenes, but no less important.

Do note, however, the name of the formal parameter in the CelsiusTemp

function this time, as well as the parameter name used in the prototype. The
name used for the Fahrenheit temperature is different in the three different
situations in which it crops up: in main, in the definition of the CelsiusTemp
function, and in the prototype for the CelsiusTemp function. The three names
used could also be identical.

Programmer-defined value-returning functions 159

15.4.2.3 Follow-up hands-on activities for ftemp_to_ctemp2.cpp

O Activity 1 Test ftemp_to_ctemp2.cpp with the same values used for the program
in ftemp_to_ctempl.cpp to make sure the behavior is the same. Here are those
values: 212, 32, 0, 98.6, and —40

O Activity2 Copy ftemp_-to_ctemp2.cpp to ftemp_to_ctemp2a.cpp and bug it as
follows:

a.

Replace int by double as the return data type of the function in both
the function prototype and the function definition.

. Remove the function prototype.

. Remove the definition of the function CelsiusTemp. What is different this

time when compared with removal of the function definition in the previ-
ous sample program ftemp_to_ctempl.cpp. Can you explain the difference?

. Change double in the parameter list of the function prototype to int.

. Make the name the same for the Fahrenheit temperature in main, in

the definition of the CelsiusTemp function, and in the prototype for the
CelsiusTemp function.

(O INSTRUCTOR CHECKPOINT 15.2 FOR EVALUATING PRIOR WORK

160 Programmer-defined value-returning functions

Module 16

Programmer-defined void
functions

16.1 Objectives

e To understand how a programmer-defined function is used to implement
procedural abstraction by encapsulating the code that performs a single
task.

e To understand the C++ reserved word void.

e To understand that the terms procedure and void function will mean the
same thing in our context.

e To review each of the following terms and concepts—previously encoun-
tered in the context of value-returning functions—in the new context of
void functions:

— function definition, function declaration, and function prototype
— function call (i.e., function invocation)

— function header, function return-type, and function return-value
— function body

— function interface

— declaration order, call order (i.e., invocation order) and execution
order of a function

— parameter, parameter list, formal parameter, and actual parameter
— pre-conditions and post-conditions

— The concept of declare before use as it relates to functions

e To understand the differences and similarities between a value parameter
and a reference parameter, and to learn how to use each.

161

Direction of information
flow in functions

Two ways for a
function to return a value

Placement of the call
to a void function

Function overloading

Compare and contrast
void functions with
value-returning functions

162 Programmer-defined void functions

e To understand the concept of the direction of information flow to and from
a function, as well as the conceptual difference between an in-parameter,
an out-parameter and an inout-parameter, and to learn how each one is
implemented in C++.

e To understand the distinction between the two different mechanisms by
which a function can return a value to its caller: via the return-value of
the function (in the case of a value-returning function), or via a reference
parameter in its parameter list (in the case of a void function).

e To understand that when a void function is called, it appears as a separate
statement, on a line by itself, together with its actual parameters, unlike
a value-returning function, which must appear in a location where a single
value (having the same type as the function’s return-type) can appear.

e To understand what is meant by function overloading and to learn when
and how to overload a function.

16.2 List of associated files

e say hil.cpp doesn’t use functions.

e say hi2.cpp shows void functions without parameters.

e say hi3.cpp shows a void function with value parameters.

e say_hi4.cpp shows void functions with reference parameters.

e swap.cpp illustrates function overloading and the algorithm which ex-
changes two variable values.

16.3 Overview

In the previous Module we looked at value-returning functions, i.e., functions
whose sole task is to compute and return a single value. Although the kind
of value returned by a function can vary widely, as can the method used to
compute it, conceptually the task performed by a value-returning function is a
very simple and specialized one.

In this Module we look at functions that perform more general tasks, or
procedures. In C++ these become void functions, i.e., functions whose return
type is void (a C++ reserved word) and which, though they may (or may not)
return values to their caller, do not do so in the same way as value-returning
functions. If a void function does return a value, it must do so by using a certain
kind of parameter called a reference parameter, and there may be as many of
these as you like.

© W N e U A W N =

R S =R
w N = O

Programmer-defined void functions 163

16.4 Sample Programs

The first four of the following sample programs form a coordinated sequence
that gradually introduces void functions, first without parameters, then with
value parameters, and finally with reference parameters. What each program
does is simplicity itself—it displays a greeting, kind of like the “Hello, world!”
program—but we need a simple situation like this in which to illustrate these
new and important concepts for the first time, so that the details of the situation
itself do not get in the way. So, we begin by displaying a simple greeting, then
display it to different “individuals” and in different positions on the output line,
and use these variations to illustrate the new concepts.

16.4.1 say_hil.cpp doesn’t use functions

//say_hil.cpp
//Displays a greeting.

#include <iostream>
using namespace std;

int main()

{
cout << "\nThis program displays a greeting.\n";
cout << "\nHi there!\n";
cout << endl;

}

16.4.1.1 What you see for the first time in say_hil.cpp

This program contains no new C++ features, and even though it contains no
void functions itself, it serves as a convenient starting point for our introduction
and discussion of void functions.

16.4.1.2 Additional notes and discussion on say_hil.cpp

The program may be thought of as performing two tasks: first, it describes
what it is going to do; second, it then does what it said it was going to do.
Each of these two “tasks” is going to be performed by a task-performing void
function in our next version of the program. We shall see that this reduces the
“complexity” of the main function by “hiding” the details of each task in its
corresponding function definition and replacing those details in main by simple
function calls.

16.4.1.3 Follow-up hands-on activities for say_hil.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for say_hil.cpp.

(O INSTRUCTOR CHECKPOINT 16.1 FOR EVALUATING PRIOR WORK

A gentle introduction
to void functions

Just a starting point,

with no functions at all

void return-type
for a function

Void function
with no parameters

© 0 N e U R W N =

N
A W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

164 Programmer-defined void functions

16.4.2 say_hi2.cpp shows void functions without
parameters

//sayhi2.cpp
//Displays a greeting.

#include <iostream>
using namespace std;

void DescribeProgram();
void DisplayGreeting();

int main()

{
DescribeProgram() ;
DisplayGreeting();
cout << endl;

}

void DescribeProgram()
//Pre: The cursor is at the left margin.
//Post: The program description has been displayed,
// preceded and followed by at least one blank line.
{
cout << "\nThis program displays a greeting.\n\n";

}

void DisplayGreeting()

//Pre: The cursor is at the left margin.

//Post: A one-line greeting has been displayed,

// preceded and followed by at least one blank line.
{

cout << "\nHi there!\n\n";

}

16.4.2.1 What you see for the first time in say_hi2.cpp

e The use of the C++ reserved word void

The reserved word void is used as the return-type of a function to indicate
specifically that the function does not return any value (in the sense that a
value-returning function returns a value), and instead “performs a task”.
The terminology is potentially confusing, however, since we still refer to a
function as having a “return-type of void”.

e The definition of a void function with no parameters, i.e., a function whose
return-type is void and whose parameter list is empty (actually, two of
them: DescribeProgram and DisplayGreeting)

Programmer-defined void functions 165

The prototype of a void function with no parameters (two of these as well,
one for each of the functions DescribeProgram and DisplayGreeting)

The listing, in comments following the function header, of pre-conditions
and post-conditions for void functions having no parameters

e The call to, or invocation of, or use of, a void function with no parameters

Note that to use, or call, a void function without parameters, you simply
place the name (followed by parentheses and a semi-colon) on a line by
itself as a separate executable statement, and it is at that point in the
“action flow” of the program that the particular task “encapsulated” by
that function is performed.

e A naming convention which comes to you very highly recommended: The
name of every void function must begin with a verb (as in Describe. . .,
Get..., Draw...)

This is a very important programming style requirement, and there is a
very good reason for it. Just think of it this way: It is the job of a void
function to do something, the name of a function should tell you what
the function does, and without a werb in the name the most the name
can tell you is what the function is about, not what it does. You will
find that starting the names of void functions with a verb will help to
reduce the amount of commenting needed to explain your code. A final
reminder: The name of a value-returning function will generally not start
with a verb. Note, however, that the capitalization convention for function
names is the same for void functions as for value-returning functions.

16.4.2.2 Additional notes and discussion on say_hi2.cpp

One of the first things you should note about this program is this: Although
the source code of the program is quite different from that of say hil.cpp, the
user interface (i.e., what the user sees when the program runs and the way in
which the user interacts with the program when it is running) is exactly the
same. This suggests that there may be many different programs which appear
to the user to be the same program, and this is in fact the case. We sometimes
describe such programs by saying that they have the same user interface.

Thus, one view of program development might be this: First, create the
“best” user-interface design that you can manage. Then make sure that your
program is the “best” of all the possible programs that would provide this user
interface. The devil is, as always, in the details, and this is an oversimplification,
of course, but the general approach is sound.

Note the overall structure of the program: The prototypes of the two func-
tions whose definitions follow main are placed before main. This is the same
kind of program structure we saw when using a value-returning function and
its prototype in Module 15, and it is used here for the same reasons. First,
when the prototype of a function appears before main, the compiler can verify

Prototypes

Pre-conditions and
post-conditions

How to call a
void function
with no parameters.

A wvery important
programming style rule

Different programs
may have the same
user interface.

Note the structure
of the program.

166 Programmer-defined void functions

that a call to that function in main has been made correctly. Second, a human
can get a good idea of what the program does without having to wade through
the details of each function called by main. Critical to this second reason, of
course, is the proper naming of all void functions with a starting verb so that
the function calls “tell the story” of what the program does.

Note too the style of this particular main function. Here we have not followed
our usual practice of separating the “logical chunks” of code by vertical white
space (blank lines). There is a simple reason for this: In this case each “logical
chunk” of code is a single line, so there is simply nothing to be gained by vertical
separation; in fact, main is probably somewhat more readable without it.

16.4.2.3 Follow-up hands-on activities for say_hi2.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for say hi2.cpp. In drawing the design tree diagram, use the names of
the void functions to indicate the subtasks.

O Activity 2 Copy say_hi2.cpp to say_hi2a.cpp and bug it as follows:

a. Omit the prototype of the function DisplayGreeting.

b. Omit the definition of the function DisplayGreeting.

c. Interchange the order of the two function prototypes.

d. Interchange the order of the two function definitions (other than main).

(O INSTRUCTOR CHECKPOINT 16.2 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48

Programmer-defined void functions 167

16.4.3 say_hi3.cpp shows a void function with value

parameters
//sayhi3.cpp

//Displays a greeting to three particular individuals, using their
//initials, and positioned at various places on the output line.

#include <iostream>

#include <iomanip>
using namespace std;

void DescribeProgram() ;
void DisplayGreeting(int column, char firstChar, char lastChar);

int main()

{
DescribeProgram() ;
DisplayGreeting(12, ’J’, ’C’);
DisplayGreeting(1l, ’P’, ’S’);
DisplayGreeting(68, ’A’, ’F’);
cout << endl;

}

void DescribeProgram()

//Pre: The cursor is at the left margin.

//Post: The program description has been displayed,

// preceded and followed by at least one blank line.

{

cout << "\nThis program displays a greeting to three individuals, "

"using their\ninitials, and positioned at various locations on "
"the output line.\n\n";

void DisplayGreeting(/* in */ int column,
/* in */ char firstChar,
/* in */ char lastChar)

//Pre: "column", "firstChar" and "lastChar" have been initialized, with
// 1<=column<=68, ’A’<=firstChar<=’Z’, and ’A’<=lastChar<=’Z’.
//Post: A greeting has been displayed, using the initials in

// "firstChar" and "lastChar", starting in position "column",

// and preceded and followed by at least one blank line.

{

cout << endl;
cout << setw(column-1) << ""
<< "Hi there, " << firstChar << lastChar << "!\n";

Value parameters ...

. are in-parameters.

The formal parameters
n a function definition
are replaced by actual
parameters in any call
to that function.

168 Programmer-defined void functions

16.4.3.1 What you see for the first time in say_hi3.cpp
e A void function having value parameters

Conceptual in-parameters, with documentation, in the parameter list of a
void function

e A call to a void function having value parameters

The use of pre-conditions and post-conditions in a void function with
parameters

The typical formatting of a function with several parameters

16.4.3.2 Additional notes and discussion on say_hi3.cpp

This program shows how information may be passed into a void function when it
is called so that the information can be used inside the function by the function
as it performs its assigned task. The formal parameters in the parameter list
of the function prototype and the function definition indicate what information
must be passed when a call is made to that function. The corresponding actual
parameters (integer and character literal values in this case) supply the actual
information to be used when a call is actually made. In this particular program
there are three different calls to the function DisplayGreeting, and a different
set of actual parameters is supplied for each call.

Contrast the style of main is this program with the style of main in the
previous sample program. Note that vertical whitespace is re-introduced here
for separation, and it should be clear that it doesn’t take much in the way
of additional code “complexity” before vertical separation begins to enhance
readability.

16.4.3.3 Follow-up hands-on activities for say_hi3.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for say hi3.cpp. In drawing the design tree diagram, use the names of
the void functions to indicate the subtasks.

O Activity 2 Copy say-hi3.cpp to say_hi3a.cpp and bug it as follows:

a. Interchange the order of the two function prototypes.

b. Interchange the order of the two function definitions (other than main).

Programmer-defined void functions 169

¢. Remove the second formal parameter from the prototype of the function
DisplayGreeting.

d. Remove the second formal parameter from the definition of the function
DisplayGreeting.

e. Remove the first actual parameter from the first call to DisplayGreeting.

f. Remove the second or third actual parameter from the second call to
DisplayGreeting.

g. Change the data type of first from char to int in the prototype of
DisplayGreeting.

h. Change the data type of column from int to char in the definition of
DisplayGreeting.

i. This change is meant to emphasize that when values are supplied as actual
parameters, variables and expressions can also be used, as well as literal
values as shown in the sample program listing.

This last point is a key one to note and remember.
So, replace the line

DisplayGreeting(12, *J’, ’C’);

with the two lines

char testChar = ’A’;
DisplayGreeting(2+8-4, char(’A’+3), testChar);

(O INSTRUCTOR CHECKPOINT 16.3 FOR EVALUATING PRIOR WORK

An actual value parameter
can be a literal value,

a variable, or even an
expression.

170 Programmer-defined void functions

16.4.4 say_hi4.cpp shows void functions with reference
parameters

//say_hi4.cpp
//Displays a greeting to an individual, using his or her
//initials, and (possibly) indented from the left margin.

#include <iostream>
#include <iomanip>
using namespace std;

© 0 N e U R W N =

10 void DescribeProgram();

11 void GetPosition(int& column);

12 void GetInitials(char& firstChar, char& lastChar);

13 void DisplayGreeting(int column, char firstChar, char lastChar);

16 int main()

17 {

18 int column;

19 char firstChar;

20 char lastChar;

21

22 DescribeProgram() ;

23

24 GetPosition(column) ;

25 GetInitials(firstChar, lastChar);
26

27 DisplayGreeting(column, firstChar, lastChar);
28

29 cout << endl;

30 }

31

32

33 void DescribeProgram()
34 //Pre: The cursor is at the left margin.
35 //Post: The program description has been displayed,

36 // preceded and followed by at least one blank line.

37 o

38 cout << "\nThis program displays a greeting to some individual, "
39 "using his or her initials\nand positioned at a location on "
40 "the output line chosen by the user.\n\n";

41}

42

43

44 void GetPosition(/* out */ int& column)
45 //Pre: none
46 //Post: "column" contains an integer from 1 to 68 (inclusive)

ar [/ entered by the user, and the input line has been cleared.
a8 {

49 cout << "Enter column (1 to 68) where greeting is to start: ";
50 cin >> column; cin.ignore(80, ’\n’); cout << endl;

51 }

52

54

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
7

Programmer-defined void functions 171

void GetInitials(/* out */ char& firstChar, /* out */ char& lastChar)

//Pre:

none

//Post: "firstChar" and "lastChar" each contain a capital letter

//
{

entered by the user, and the input line has been cleared.

cout << "Enter the (capital) initials of the person to greet: ";
cin >> firstChar >> lastChar; cin.ignore(80, ’\n’); cout << endl;

void DisplayGreeting(/* in */ int column,

//Pre:
//

/* in */ char firstChar,

/* in */ char lastChar)
"column", "firstChar" and "lastChar" have been initialized, with
1<=column<=68, ’A’<=firstChar<=’Z’, and ’A’<=lastChar<=’Z’.

//Post: A greeting has been displayed, using the initials in

//
//
{

"firstChar" and "lastChar", starting in position "column",
and preceded and followed by at least one blank line.

cout << endl;
cout << setw(column-1) << ""

<< "Hi there, " << firstChar << lastChar << "!\n\n";

16.4.4.1 What you see for the first time in say_hi4.cpp

A void function having reference parameters

A reference parameter is indicated by placing an ampersand character
(&) after the type name for that parameter. The best way to think of a
reference parameter is this: it is an alias (i.e., another name) for whatever
actual parameter is passed (in the corresponding parameter position, of
course) when the function is called. In this particular program, the “alias”
is actually the same as the original name in each case, but this need not
be true, and often will not be true.

A conceptual out-parameter,with documentation, in the parameter list of
a void function

Because a reference parameter is just another name for an already existing
location in memory, any change made in that location by the function will
be reflected in the state (i.e., the value) of the variable that was passed as
the actual parameter when the function is finished executing.

A call to a void function having reference parameters

The actual parameter passed in the case of a reference parameter must be
a variable. That is, an actual reference parameter cannot be a literal value
or an expression, unlike the situation in the case of a value parameter.

A choice of styles in parameter-list formatting, either of which is OK
(though a long parameter list may force one style upon you)

Reference parameters ...

are often, but not always,

conceptual out-parameters.

Actual reference parameters
must be variables.

Information may be
returned by a function

to its caller via a
reference parameter but
not by a value parameter.

172 Programmer-defined void functions

16.4.4.2 Additional notes and discussion on say_hid.cpp

This program shows how information may be returned from or passed back
from or passed out of a void function to the caller of that void function, via a
reference parameter in the function parameter list.

Once again, the data types of the formal parameters in the parameter list
of the function indicate what kind of information (values) will be passed back
when a call to that function is finished executing.

After the call, the variables which are supplied as the actual parameters by
the caller of the function will contain the information (values) supplied by the
function. Those values can then be used by the caller, or simply passed along
to another function, as is the case in this sample program.

Compare once again the style (in particular, the vertical spacing used) in
main with that of the previous two sample programs. Compare also the format-
ting used for the parameter list in the definitions of the functions GetInitials
and DisplayGreeting. The style used for GetInitials is OK for one or two pa-
rameters, but as soon as there are three or more it is better (i.e., more readable)
to use the style shown in DisplayGreeting.

16.4.4.3 Follow-up hands-on activities for say_hi4.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for say_ hi4.cpp. In drawing the design tree diagram, use the names of
the void functions to indicate the subtasks.

O Activity 2 Copy say_hi4.cpp to say_ hida.cpp and bug it as follows:

a. Replace int& by int in the prototype for the function GetPosition.

b. Replace int& by int in the definition of the function GetPosition.

c. Replace int& by int in the prototype and in the definition of the function
GetPosition.

d. Replace char first by char& first in the prototype for the function
DisplayGreeting.

e. Replace char first by char& first in the definition of the function
DisplayGreeting.

Programmer-defined void functions 173

f. Replace char first by char& first in both the prototype and in the
definition of the function DisplayGreeting.

g. In DisplayGreeting replace each occurrence of column by position, each
occurrence of first by chi, and each occurrence of last by ch2.

h. This program contains four function definitions other than main and four
corresponding prototypes. The four prototypes can be arranged in 4! = 24
different orders, and so can the function definitions, which gives a total of
24 %24 = 576 different overall orderings for the definitions and prototypes
combined. Try at least two of these to see if they still work. That is,
rearrange both the prototype and function definitions into some other
order, then try to compile, link, run and test the program again. (Be sure
to keep all of the function prototypes in a group and located before main,
and all of the function definitions in a group and located after main.)

Record your findings below, as well as your answers the following ques-
tions: Did one of your alternate orderings not work? If so, why not? If
not, can you find some other ordering which does not work? If so, what
is it? If not, why not?

0O Do we really need two functions to get input? Make a copy of the file
say_hi4.cpp called say_hi4b.cpp and modify the copy so that the two input
functions are replaced with a single input function that accomplishes the
same task as the two in the original program. Think about what name
you will use for the single function, and also think about whether the use
of a single function in this situation is “better” or “worse” than the use
of two functions, and what arguments you might use to support either
choice.

(O INSTRUCTOR CHECKPOINT 16.4 FOR EVALUATING PRIOR WORK

174 Programmer-defined void functions

16.4.5 swap.cpp illustrates function overloading and the
algorithm which exchanges two variable values

//swap.cpp
//I1llustrates function overloading and the standard
//algorithm for exchanging the values of two variables.

#include <iostream>
#include <iomanip>
using namespace std;

© 0 N U R W N =

10 void DescribeProgram();

11 void Swap(int& il, int& i2);
12 void Swap(char& c1, char& c2);
13 void Pause();

14 void Pause(int indentLevel);

16
17 int main()

s {

19 DescribeProgram() ;

20

21 //The (deliberate) naming of the following variables here in "main"
22 //and the naming of the formal function parameters in the function
23 //definitions below emphasizes that formal function parameters may
24 //(or may not) have the same names as the corresponding actual

25 //parameters in subsequent parmeter calls.

26 int i1, i2;

27 char first, second;

28

29 cout << "Enter two integers: ";

30 cin >> il >> i2; cin.ignore(80, ’\n’); cout << endl;

31 cout << "In the order entered, the integers are: ";

32 cout << il << ", " << i2 << endl;

33 Pause(7);

34 Swap(il, i2); //Actual/formal parameters have same names

35 cout << "And here are the two integers reversed: ";

36 cout << i1 << ", " << i2 << endl;

37 Pause(7);

38

39 cout << endl;

40

41 cout << "Enter two characters: ";

42 cin >> first >> second; cin.ignore(80, ’\n’); cout << endl;

43 cout << "In the order entered, the characters are: ";

44 cout << first << ", " << second << endl;

45 Pause();

46 cout << endl;

a7 Swap(first, second); //Actual/formal parameters have different names
48 cout << "And here are the two integers reversed: ";

49 cout << first << ", " << second << endl;

50 Pause();

51

52 cout << endl;

54

105

Programmer-defined void functions 175

void DescribeProgram()

//Pre: The cursor is at the left margin.

//Post: The program description has been displayed,

// preceded and followed by at least one blank line.

{

cout << "\nThis program illustrates the standard \"two-value "

"exchange algorithm\" and\nfunction overloading. It is "
"necessary to study both the source code and\nthe output "
"simultaneously, but in the meantime, just follow "
"instructions.\n\n";

void Swap(/* inout */ int& il, /* inout */ int& i2)

//Pre: "il" and "i2" have been initialized.
//Post: The values of "il" and "i2" have been swapped.
{

int temp = il;

il = i2;

i2 = temp;

void Swap(/* inout */ char& cl, /* inout #*/ char& c2)

//Pre: "c1" and "c2" have been initialized.
//Post: The values of "cl1" and "c2" have been swapped.
{

char temp = ci;

cl = c2;

c2 = temp;

void Pause()
//Pre: The input stream cin is empty.
//Post: The program has displayed a one-line message beginning in

// column 1 and then paused, and the user has pressed Enter.
{

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);
}

void Pause(/* in */ int indentLevel)
//Pre: The input stream cin is empty, and O <= indentLevel <= 50.
//Post: The program has displayed a one-line message beginning in

// column indentLevel+l and then paused. The user has pressed
// Enter, and a blank line has been inserted in the output stream.
{

cout << setw(indentLevel) << "" << "Press Enter to continue ... ";

cin.ignore(80, ’\n’);
cout << endl;

Overloaded functions

Inout-parameters must

be reference parameters.

Remember this!

Encapsulation

When to use
overloaded functions

176 Programmer-defined void functions

16.4.5.1 What you see for the first time in swap.cpp

e Two void functions with the same name but different parameter lists (In
fact, the program contains two instances of this: two versions of Swap and
two of Pause.)

Whenever we have this situation, we describe it by saying that the function
name is overloaded, which simply means that the same name is being used
for two (or more) functions. This is no problem for the C++ compiler as
long as the parameter lists of each function are distinct, since the compiler
will then use the parameter lists to distinguish the functions and decide
which function is to be used in any particular function call.

e A conceptual inout-parameter

Each of the two parameters in each of the two Swap functions is an inout-
parameter, since each parameter takes one value into the function and
sends another value back out. Note that a reference parameter must be
used to do this since information is being returned from the function, as
in the case of an out-parameter.

e The use of the algorithm for exchanging the values of two variables

e The encapsulation into a procedure (i.e., into a void function) of the “task”
of causing a program to pause and wait for the user to press Enter to
continue

16.4.5.2 Additional notes and discussion on swap.cpp

Function overloading, as illustrated in this program, should be used sparingly
and carefully. The kind of situation it should be used in is illustrated here by the
Swap function, i.e., a situation where the same operations are being performed
on different kinds of data. Note that we really didn’t need to overload the Pause
function, since a call to Pause(0) gives the same effect as a call to Pause(),
except for the blank line inserted by Pause(0).

16.4.5.3 Follow-up hands-on activities for swap.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for swap.cpp. In drawing the design tree diagram use the names of the
void functions to indicate the subtasks.

O Activity 2 What problem with drawing the design tree diagram crops up here
for the first time, and how would you suggest dealing with it?

Programmer-defined void functions 177

O Activity 3 Copy swap.cpp to swapl.cpp and bug it as follows:

a. Replace the Pause(7) in line 33 by Pause(60).

b. Replace int& by int everywhere in both the prototype and the definition
of the first version of the function Swap. Explain below why you get what
you get when you run the program.

c. Replace the first int& (i.e., the one for the first parameter) by int in
both the prototype and the definition of the first version of the function
Swap. Explain below why you get what you get when you run the program.

d. Replace the second int& (i.e., the one for the second parameter) by int
in both the prototype and the definition of the first version of the function
Swap. Explain below why you get what you get when you run the program.

e. Remove the call to cin.ignore (80, ’\n’) in line 30.

f. Remove the call to cin.ignore(80, ’\n’) in line 42.

(O INSTRUCTOR CHECKPOINT 16.5 FOR EVALUATING PRIOR WORK

178 Programmer-defined void functions

Module 17

A third look at program
development: program
modularity, program
structure, information flow,
stubs and drivers

17.1 Objectives

To understand the structured approach (also called the procedural ap-
proach) to the program development process, and its relationship to top-
down design with step-wise refinement.

To understand how functions fit into the top-down design with step-wise
refinement approach to procedural program development.

To revisit the notion of a design-tree diagram, in the context of functions,
with and without data-flow information.

To learn what is meant by a stub and a driver, and to understand how
they are used in program development.

To understand what is meant by the term interface, and to be able to
distinguish between the interface to a program (i.e., the user interface)
and the interface to a function.

To learn some additional style conventions for structuring programs.

179

Program modularity

Program structure

Information flow
via parameters

180 A third look at program development: program modularity,

e To work through in detail the steps involved in developing a program
consisting of several functions by applying the structured programming
approach via top-down design with step-wise refinement.

17.2 List of associated files

e stub_driver.cpp contains a generic shell program with stubs and a driver.

17.3 Overview

In Modules 15 and 16 we examine both value-returning functions and void
functions. We point out thee that as soon as a program becomes non-trivial
(which, as a rough guide, we may think of as “longer than a page or so”) it
becomes advantageous to break the program up into functions, each of which
encapsulates the necessary code to perform some task—calculating one value, in
the case of a value-returning function, and some more general task, usually, in
the case of a void function—and then calling these functions as often as needed
and in the proper order to get the overall task done.

We saw a number of examples, all of them quite small, which contained one
or more programmer-defined functions in addition to main, and were able to
appreciate, to some extent at least, how increasing the modularity of a program
by breaking it up into modules (or, to be more specific in our case, into functions)
enhanced the readability of the program by isolating the detailed code for each
task in a function definition and replacing the detailed code by a function call.

The program structure in each case was the same: included header files
first, followed by the function prototypes, then main, and finally the definitions
of the functions other than main. We shall retain that general structure as our
programs grow to include more and more functions, with the added proviso
that the function definitions other than main that follow main will appear in
the same order as the prototypes of those functions that precede main, which is
yet another attempt to avoid confusion and enhance readability.

We also saw how parameters could be used to move information into and
out of functions as required. Pre-conditions and post-conditions told us exactly
what was involved in each case, and we also added comments in all parameter
lists to tell us whether each parameter was an in-parameter, an out-parameter,
or an inout-parameter.

A difficulty with that presentation, however, is this: Like the rest of what we
have seen, it showed us certain things that we need to know and which will be
very useful as we proceed, but it showed us just the end result, and not how that
result was arrived at. That is, we began by looking at a “finished” program,
and asked what it told us, or what it showed us that we hadn’t seen before.
What we have not had, thus far, is a serious look at the details of the process
by which such a program, i.e., a program consisting of several functions, comes
into existence.

program structure, information flow, stubs and drivers 181

In this Module we come to grips, finally, with what it takes to develop a
program consisting of several functions “from scratch”. Unfortunately, it is
practically impossible for you to see what really happens during this process
unless you are “lucky” enough to be able to look over someone’s shoulder during
the entire development of a program and that person not only tells you what he
or she is doing at every step, but also “thinks out loud” in your presence along
the way.

In fact the process is not a very “clean” one, and it can sometimes, in fact,
be quite “messy”. Nor is it nicely “linear”, proceeding from problem statement
to a working program which provides the solution in some well-defined sequence
of steps from beginning to end. Rather, it is an “iterative” process, in which one
often has to return to some prior point and come forward again, after discovering
that one has gone down a blind alley or made some minor or major incorrect
decision at an earlier stage.

There is not even general agreement on what is the “best” programming
methodology to use, and in fact it is probably fruitless to search for such a thing.
Different approaches work better in different situations for different problems,
and that is about all one can safely say.

But don’t be discouraged. The particular approach we shall examine in
this Module is called structured programming (or procedural programming), in
which emphasis is placed on identification of the various “procedures” or “tasks”
to be performed, with the data to which the tasks must be applied having a
somewhat secondary role, and the data and tasks are viewed as, treated as, and
appear in the code as, separate entities. This approach actually works quite
well, when properly applied, for programs of small to moderate size, and all of
our programs will fall within this range.

The structured programming methodology is quite distinct from the object-
oriented methodology, in which the data or objects are front and center and
procedures or tasks are viewed as simply “behavioral” aspects of the various
objects. We will come back to these object-oriented ideas later.!

The procedural approach to program development may be viewed as con-
sisting of the following major steps or phases:

a. Problem Analysis

In the problem analysis phase of program development you must make
absolutely sure that you thoroughly understand the problem to be solved.
This may require reformulating all or part of the problem. It is your job
to remove all ambiguities and make everything explicit, which may require
checking with the ultimate end-user for clarification, or, failing that, mak-
ing some necessary assumptions about how things will be handled. At this
stage you should also attempt to identify all entities (things) involved in
the problem and, at least in a general way, what needs to be done with
them.

IBut not till Part IT of this Lab Manual.

An iterative process
(and often a “messy” one)

Programming methodologies

Structured programming
(procedural programming)

Object-oriented methodology

Steps in the procedural
(structured) approach to
program development

If you don’t know what you
are trying to do, there’s no
point worrying about how
you’re going to do it.

Specify what both the input
and the output are going to
look like.

This is where you apply top-
down design with step-wise
refinement and write some
pseudocode.

Now translate your
pseudocode into
actual C++ code.

182

A third look at program development: program modularity,

b. Problem Specification (includes design of test data)

Since it is a given that our ultimate goal is a program to solve the problem,
we can perform the problem specification phase of the development by
specifying exactly what the input and output to that program must be in
order that the problem be solved. This might involve specifying things like
the following: input source (keyboard or file, for example); format of both
the input and output data; and how the program is to respond to “bad”
data. This of course requires knowing what form the input data is going to
be in, and you need to design appropriate test data sets to use for testing
both your algorithm design in the next phase and the program when it is
finished. Such data should include not only some easy and typical values,
but also some extreme values, special values (if any), and perhaps even
illegal values, depending on how robust your program is supposed to be.

Algorithm Development (includes design and testing)

The algorithm development phase is where you will apply top-down design
with step-wise refinement and write pseudocode to describe the various
tasks that need to be performed to solve the problem. When you apply
the procedural approach to program development you begin by breaking
the overall task down into a sequence of sub-tasks, each of which can be
more easily managed than the original “big” task. You need to determine
exactly what each sub-task is, as well as what entities are involved, what
actions need to be performed on those entities, and the order in which
those actions need to be performed in order to complete that task. Some
actions might be very simple (those that could be implemented as one or
two C++ statements when we get to the coding phase) and some will of
course be much more complicated, requiring a separate function. In such
cases, don’t forget that the first line of attack is to ask: Is there a function
anywhere in one of the C++ libraries that will do what needs to be done?

Once you have the algorithm that you believe solves your problem, you
must test it using all (or as much as is reasonable) of the test data that
you developed in the previous phase. Note that this is pencil-and-paper
testing, not the testing of a computer program.

Note
None of the above three phases involved using the computer.
Now is a good time to point out the first rule of programming:

THE SOONER YOU START CODING, THE LONGER IT’S GOING TO TAKE.

Coding (and testing)

Now comes the coding phase, where one’s vast knowledge of C+—+, as well
as the by-now-familiar edit-compile-link-run-test-debug phase of program
development, come into play. It is here that one must “translate” pseu-
docode from the previous phase into actual C++ code. Note that up to

program structure, information flow, stubs and drivers 183

this stage not only has the computer not been used, one may not even
have decided what programming language is going to be used to write the
program. Of coure, we know that it’s going to be C++, but the point is
that in general a programmer can postpone even that decision until this
point in the development process.

The testing involved in this phase is “just” to make sure the program
compiles, links and runs correctly in a few typical cases, in preparation
for the more thorough testing that comes in the next phase.

e. Program Testing

The testing we are talking about here is more thorough, involves the test This testing must exercise
data sets that we prepared earlier in the problem specification phase, and the program thoroughly using
must result in a program that we are confident will work correctly in all the test data sets developed
possible situations. Note that we can never be absolutely sure® of this, earlier in the specification
but we should not rest until our confidence is at a very high level. and algorithm development
phases.

f. Documentation
Although we list a documentation phase as a specific phase (and the last
phase) of our program development stages, documentation must actually
be a continual activity throughout the process. You are simply asking Documentation must be
for trouble to wait till the end to do all of your documentation. A much an ongoing affair, not
better plan is to make sure that each part of the process is completely a one-night stand.
documented as you complete it, and use this final documentation phase
in the above list simply as a final opportunity to make sure that all the
i’s are dotted and the t’s crossed.

As for the specifics of the documentation, as always there are two things Two aspects of
to keep in mind: program documentation

e Make the source code readable.
e Provide a good user interface when the program runs. That is, make
the program “user friendly”.

You are by now familiar with many of the things that make source code Some style reminders
readable: for producing readable

source code
e The use of a consistent overall style

e Meaningful identifier names properly and consistently capitalized
e Good spacing, indentation, and alignment
e Informative but not excessive commenting

e The use of programmer-defined constants where appropriate

2Which brings to mind a remark world-renowned computer scientist Donald Knuth made
about one of his programs, that went something like this: “I have merely proved this program
to be correct; I have not actually tested it.”

Some style reminders
for producing a good
user interface

The program
development process

Stubs and drivers

184 A third look at program development: program modularity,

As for the user interface, make sure that your program

e Describes itself when it runs (and also identifies you as the program-
mer, if required, as in a programming project submitted for evalua-
tion, for example)

e Provides good user prompts for keyboard input
e Echoes all input data somewhere in the output

e Formats all output in a way that is “pleasing to the eye”

The first three of the six steps listed above are sometimes called the problem-
solving phases and the last three the solution-implementation phases of the
program development process. With any modern sophisticated piece of software
there will be several follow-up and maintenance phases as well, involving such
things as the delivery of the software to its end-users, the training of those
end-users in its use, and the fixing of bugs and making requested changes when
requested or required, as time goes on and the users gain experience with the
program. We will not discuss these aspects of software development any further,
not because they are not important but because they are better dealt with in a
more advanced course on software engineering.

We do, however, want to discuss a couple of new concepts and some termi-
nology which has a natural home in the current context, but the main goal here
is just to get a good sense of how the program development process goes.

One important new concept is that of stubs and drivers, and how they fit
into the program development process. We introduce these in the context of
the sample program stub_driver.cpp in the next section.

We also want to extend slightly the notion of a design tree diagram, now
that we have functions and parameters at our disposal, so let’s do that next.
In fact, we should take this opportunity to remind you that the ideas embodied
in the notions of top-down design with step-wise refinement, pseudocode, and
design tree diagrams become even more important and useful as our programs
increase in complexity and involve many more functions.

The idea that we wish to introduce here is that of adding to any design tree
diagram for a program a pictorial indication of the information flow that takes
place in that program. The idea is quite simple, and a short example should
convey the necessary essentials.

Suppose the (incomplete) body of the main function of a simple program is
this:

{
DeséfibeProgram O;

GetData(data) ;
UseData(data);

program structure, information flow, stubs and drivers 185

We would draw the corresponding design tree diagram as shown in Fig- Showing function names
ure 17.1, in which the only difference from previous design tree diagrams is that in a design tree diagram
sub-tasks are now indicated by the names of the functions that perform them:

main

DescribeProgram GetData UseData

Figure 17.1: Design Tree Diagram for Program with Functions

However, if we know that data is an out-parameter of GetData and an in- Showing information flow
parameter of UseData we can indicate that information as in the revised design in a design tree diagram
tree diagram of Figure 17.2.

main
1 data | data
DescribeProgram GetData UseData

Figure 17.2: Design Tree Diagram Showing Direction of Information Flow

In such a diagram we would place the name of each out-parameter above
the name of its corresponding function with an associated up-arrow and each
in-parameter above its corresponding function with an associated down-arrow.
Inout-parameters (of which none are shown here) would have two associated
arrows, one up and one down (or a single double-headed arrow). Such an en-
hanced design tree diagram conveys more information to the viewer than the
corresponding diagram without the information-flow data, and may therefore
be quite helpful in providing an overview of how a program behaves.

© 0 N e U oe W N e

MMM NN R R R R R R R R R
AW N = O © N e O kA W N RO

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50

51

186 A third look at program development: program modularity,

17.4 Sample Programs

17.4.1 stub_driver.cpp contains a generic shell program
with stubs and a driver

//stub_driver.cpp

//A new kind of generic shell program containing "stubs" and
//a main "driver" which can be used as a starting point for
//many programs containing several functiomns.

#include <iostream>
using namespace std;

void DescribeProgram();
void GetInputData();
void ComputeSomeValues();
void DisplayAllValues();

int main()

{
DescribeProgram() ;
GetInputData();
ComputeSomeValues() ;
DisplayAllValues();
cout << endl;

}

void DescribeProgram()
//Pre/Post conditions
{

cout << "\nThis program is wonderful ...\n";

}

void GetInputData()
//Pre/Post conditions
{

cout << "\nNow inside GetInputData ...\n";

}

void ComputeSomeValues()
//Pre/Post conditions
{
cout << "\nNow inside ComputeSomeValues ...\n";

}

void DisplayAllValues()
//Pre/Post conditions
{
cout << "\nNow inside DisplayAllValues ...\n";
}

program structure, information flow, stubs and drivers 187

17.4.1.1 What you see for the first time in stub_driver.cpp

e A program containing several stubs (also called stub functions)

e A driver (the main function in this case) that calls each of the stubs

17.4.1.2 Additional notes and discussion on stub_driver.cpp

This program illustrates what is essentially another form of shell program, which Another kind of
differs substantially from the one we saw earlier in the shell.cpp program of shell program
Module 6, though the two could easily be combined.
The main function in this context is called a driver for the other functions
which are called stub functions, or stubs, because at the moment they are in-
complete, which is what the word “stub” suggests.
Even though each of the stubs is incomplete, the program nevertheless com-
piles, links and runs. And even though it doesn’t “do” anything, it gives us a
working “shell” that we can complete, one stub at a time. Of course, in a real Complete the program
situation, such as the “farmer problem” we wish to solve in the hands-on activ- one stub at a time.
ities of this Module, the names of the stubs might be better chosen to reflect
the nature of the problem but the principles remain the same.
The idea is to complete the program by completing each of the stubs in turn
(independently if possible, but occasionally it may be more convenient to work
on more than one stub at a time, in parallel). This approach to the actual Implement top-down as
coding parallels our top-down design approach since we will, of course, be using well as design top-down.
our pseudocode from that design to complete the stubs. It’s important to note,
though, that the “completion” of a stub might well involve the introduction
of one or more other stubs at a “lower level” which will not themselves be
completed till later in the development. This in turn is, of course, just step-wise
refinement in action.
Once we know what the names of the functions at any particular level are
going to be, the next step is to decide on the parameter list for each function,
which, together with the name, is sometimes (as you know) referred to as the
interface to the function. Doing this requires you to decide what information, if
any, is to flow into or out of the function, and to choose suitable names for any
data values that must flow in or out. When each interface has been completed, it
can be tested by supplying “dummy values” to the parameters (via assignment,
for example) before the code that produces the actual values has been written.
At any point in this process you should be able to compile, link and test a
“working” program.
Next, the body of each function must be completed. This involves filling in
the code that permits each function to actually do its particular task, according
to the specifications for that function, and will be guided by the pseudocode
for that function produced during the design phase. Each individual function
must be tested independently as thoroughly as possible when it is finished, and
if you are implementing the design in top-down fashion using stubs and drivers,
starting with your main function as the top-level driver, you will always have a
built-in driver for each completed function.

Integration testing
is the “acid test”.

188 A third look at program development: program modularity,

Finally, when all functions have been completed, you must perform what
is called integration testing, i.e., putting the program through its paces as a
whole and making sure that it solves the original problem (i.e., that it complies
with its original specifications).

17.4.1.3 Follow-up hands-on activities for stub_driver.cpp

O Activity 1 Copy, study and test the program in stub_driver.cpp.

O Activity 2 Use the ideas discussed in this Module and the kind of shell program
with stubs and drivers shown in stub_driver.cpp to develop, through all of the
various phases, a complete solution to the following “farmer’s problem”:

Design and write a program that a farmer can use to determine the
cost of both fencing and fertilizing a rectangular field.

Though all of the necessary ideas have been presented in this Module, and
the concepts are reasonably straightforward, this will nevertheless be a tall order
for most beginning programmers. What seems simple in theory turns out not
to be so simple in actual practice, and you should not feel intimidated if it
seems like a daunting task. In all likelihood, you will need some guidance in
class and/or lab as you make your way through the details of this program
development. Once you have the basic ideas involved well in hand, however,
you are on your way and the sky’s the limit.

(O INSTRUCTOR CHECKPOINT 17.1 FOR EVALUATING PRIOR WORK

Module 18

Consolidating I/0, files,
selection, looping, functions
and program development

18.1 Objectives

To get some experience in putting together a number of different lower-
level constructs to create useful higher-level constructs to perform some
particular tasks.

To appreciate the importance of having a program terminate “gracefully”,
and to begin looking at some of the many ways this graceful termination
can be implemented.

To understand the use of a call to the exit () function from the cstdlib
library to terminate a program.

To understand how to make use of files as function parameters.

To learn how to declare a formal function parameter when the actual
parameter can be either cin or an input file stream.

To learn how to declare a formal function parameter when the actual
parameter can be either cout or an output file stream.

18.2 List of associated files

reverse digits.cpp displays positive integers entered from the keyboard
with their digits in reverse order.

display_file data.cpp displays on the screen the contents of a textfile of
specific data.

189

Now’s the time to work
with some more complex
programs and consolidate
your knowledge.

190 Consolidating 1/0, files, selection, looping, functions

e display file data.in is a sample input file for display file data.cpp.

e read write.cpp copies data from file to file, and keyboard to screen, using
the same functions for both transfers.

e report_wages.cpp contains a wage-reporting shell program with stubs and
a main driver.

e draw boxes.cpp draws empty boxes using only punctuation characters for
the border character.

18.3 Overview

In earlier Modules we began to see how much more power and versatility pro-
grams could achieve when they were given the ability to make decisions, and the
ability to repeat one or more actions. Now that we have programmer-defined
functions for encapsulating task performance available as well, we have at our
disposal not only a great deal of potential power, but the means of keeping the
complexity of our programs under control as we invoke that additional power.

Although this Module contains a few new C++ features, its main purpose is
to provide some (small) examples of programs that involve all of the major con-
cepts we have introduced in the last few Modules: decision-making, looping and
programmer-defined functions, all working together to accomplish some higher
goal, and put together using the principles of structured program development
discussed in Module 17.

It is really only now, as our programs continue to grow ever more complex,
and we make them perform ever more complicated tasks, that the real need
for the method of top-down design with step-wise refinement is felt, and the
real usefulness of this tool in program development can be appreciated. The
programs that appear here, though still tiny, nevertheless required an organized
approach for their development, and you need to apply that same approach to
all of your programs of this size or larger, in order to become comfortable with
top-down design.

However, you must also remember this: The top-down approach is only
one part of any design methodology that you might choose to use. And even
supposing you have the best design in the world, it is still a non-trivial task to
actually implement'® that design and produce a working program that performs
as required. To help you carry out this phase of program development—getting
from your wonderful on-paper design to a working program—you will need to
make use of everything at your disposal and follow as well as you can the steps
given in Module 17 for program development via the procedural approach.

LAs in “to boldly go ...”, and, hoping and trusting that Winston would also approve the
split infinitive, grammar purists once again be damned. (See page 7 for Winston’s opinion on
another matter.)

and program development 191

18.4 Sample Programs

18.4.1 reverse_digits.cpp displays positive integers input
from the keyboard with their digits in reverse

order
1 //reverse_digits.cpp
2 //Displays each positive integer input with the digits reversed.
3
4
5 #include <iostream>
6 using namespace std;
7
8
o void DescribeProgram();
10 void GetPositivelIntegerFromUser(int& i);
11 int ReversedDigitsOf(int i);
12
13
14 int main()
15 o
16 DescribeProgram() ;
17
18 int i;
19 GetPositiveIntegerFromUser (i) ;
20 while (i !'= 0)
21 {
22 if (i > 0)
23 cout << "The reverse of the integer " << i
24 << " is " << ReversedDigitsOf(i) << ".\n\n";
25 else
26 cout << "Not a positive integer. Try again.\n";
27 GetPositiveIntegerFromUser (i) ;
28 }
29 cout << endl;
30 }
31
32
33
34 void DescribeProgram()
35 //Pre: The cursor is at the left margin.
36 //Post: The program description has been displayed,
37 // preceded and followed by at least one blank line.
38 o
39 cout << "\nThis program gets a positive integer from the user, then "
40 "computes and outputs\na new integer which is the old one with "
41 "its digits reversed.\n\n";
42}
43

IS
IS

45
46 void GetPositiveIntegerFromUser(/* out */ int& i)

47 //Pre: none

48 //Post: "i" contains a positive integer entered by the user.

a9 // The input stream "cin" is empty.

so0 {

51 cout << "Enter a positive integer here, or O to quit: ";
52 cin >> i; cin.ignore(80, ’\n’); cout << endl;

53 }

Reverse-engineering
a solution program

65

192 Consolidating 1/0, files, selection, looping, functions

int ReversedDigitsOf(/* in */ int i)

//Pre: "i" has been initialized and contains a positive integer.
//Post: Function value returned is the integer containing the

// digits of "i" in reverse order.

{

int reverse = 0; //Contains no digits from "i"

while (i != 0)

{
reverse = 10*reverse + i%10; //Add last digit of "i" to "reverse"
i=1i/10; //Remove last digit from "i"

}

return reverse; //Contains value of "i" with digits reversed

18.4.1.1 What you see for the first time in reverse_digits.cpp

e Both void functions and value-returning functions that have been defined
by the programmer and are working together with decision-making con-
structs and looping constructs, all in the same program

e Some mildly unorthodox naming and formatting:

— First, the name of the function that finds the reversed digits is some-
what unorthodox and you might want to comment on its readability
(the name was chosen in the hope that it would be readable).

— Second, also in the same function, we have removed the spaces around
some (but not all) of the arithmetic operators (again, somewhat of
a departure from normal practice, but done to enhance readability
by showing more clearly the operands associated with a particular
operator).

18.4.1.2 Additional notes and discussion on reverse_digits.cpp

Note that even though this is a very short program, it nevertheless involves
decision-making, looping, and both void and value-returning functions. Clearly
the presence of all these features makes the program somewhat more complex in
some respects than any we have seen thus far, and there is probably no better
exercise that you could do right now than to run the program a few times to
see how it behaves, and then try to reverse-engineer the program, i.e., try to
produce a design that, if implemented, would give you a program that behaves
just like the one in reverse_digits.cpp. Compare your design with the program
in reverse digits.cpp, note any differences, and decide whether the two are in
fact equivalent (and, if so, which you like better).

and program development 193

18.4.1.3 Follow-up hands-on activities for reverse_digits.cpp

O Activity 1 Copy, study and test the program in reverse digits.cpp.
O Activity 2 Perform the design exercise suggested in the paragraph above.

O Activity 3 Copy reverse digits.cpp to reverse digitsl.cpp and then bug it
as follows:

a. Replace (i '= 0) with (i > 0) in the main function.

b. Replace (i != 0) with (i > 0) in the ReversedDigitsO0f function.

O Activity 4 Make a copy of reverse digits.cpp called reverse digits2.cpp and
modify the copy so that it essentially works as before, except that it also dis-
plays negative integers with their digits reversed instead of outputting the error
message that it currently displays when the user enters a negative integer. For
example, if the user enters —1234, the revised program should display —4321.

O INSTRUCTOR CHECKPOINT 18.1 FOR EVALUATING PRIOR WORK

O Activity 5 Make a copy of your completed reverse digits2.cpp from the pre-
vious activity and call it reverse_odd_even.cpp. Modify the copy so that if the
user enters a positive integer, the program displays another integer consisting
of all odd digits in the input integer in reverse order. For example, if the user
enters 1234, the revised program should display 31. Also, if the user enters a
negative integer, the program displays another (negative) integer consisting of
all even digits in the input integer in reverse order. For example, if the user
enters —1234, the revised program should display —42. In either case, if there
are no digits of the required type, nothing is displayed.

O INSTRUCTOR CHECKPOINT 18.2 FOR EVALUATING PRIOR WORK

194 Consolidating 1/0, files, selection, looping, functions

18.4.2 display_file_data.cpp displays on the screen the
contents of a textfile of specific data

//display_file_data.cpp
//Displays the data from a file, provided
//the data in the file has a certain format.

#include <iostream>
#include <fstream>
using namespace std;

© 0 N e U R W N =

void DescribeProgram();
10 void ReadAndDisplayFileData(ifstream& inFile);

12 int main()

13 {

14 DescribeProgram() ;

15

16 ifstream inFile;

17 inFile.open("in_data");

18 cout << "Here is the data from the file: " << endl;
19 ReadAndDisplayFileData(inFile) ;

20 inFile.close();

21}

23 void DescribeProgram()
24 //Pre: The cursor is at the left margin.
25 //Post: The program description has been displayed,

26 // preceded and followed by at least one blank line.

27 {

28 cout << "\nThis program displays all the data from a file called "
29 "\"in_data\".\nIf no output (or bizarre output) appears below, "
30 "the file is not yet\navailable on your system. Study the "

31 "source code, create a file with\nthe appropriate format, and "
32 "then try again.\n\n";

33}

34

35 void ReadAndDisplayFileData(/* in */ ifstream& inFile)
36 //Pre: The file denoted by "inFile" exists, contains data in

37 // the proper format, and has been opened.
38 //Post: The data in "inFile" has been displayed.
30 {

40 char firstInitial, lastInitial;

41 int markl, mark2, mark3;

42

43 inFile >> firstInitial >> lastInitial;

44 inFile.ignore(80, ’\n’);

45 inFile >> markl >> mark2 >> mark3;

46 inFile.ignore(80, ’\n’);

a7

48 cout << "\nStudent’s Initials: "

49 << firstInitial << lastInitial

50 << "\nStudent’s Test Marks: "

51 << markl << " " << mark2 << " " << mark3;
52 cout << endl << endl;

and program development 195

18.4.2.1 What you see for the first time in display_file_data.cpp

e A parameter which has an ifstream data type (i.e., a parameter which is
the name of a file) and which is a conceptual in-parameter even though it
is a reference parameter

e The use of inFile.ignore(80, ’\n’) for file input in a manner analogous
to the way in which cin.ignore (80, ’\n’) was used for keyboard input

18.4.2.2 Additional notes and discussion on display_file_data.cpp

The most important thing to note about this program is that the file variable
inFile is implemented as a reference parameter, even though conceptually it
is an in-parameter (it is passing the data in the file to the function). This runs
counter to our usual guidelines, which would have it that an in-parameter should
be implemented as a value parameter.

However, there is a very good reason for requiring a file parameter to be a
reference parameter. A function always makes its own copy of the data in a
value parameter, and it would be wasteful at best, and impossible at worst, for
a function to copy all the data in a file each time a file was passed to it, since the
file might be very large indeed. Thus the rule to remember is this: A parameter
which refers to the name of a file, used for either input or output (i.e., which has
a data type of ifstream or of stream) must be passed as a reference parameter.
It is a compile-time error if you fail to do this.

Note that we again use inFile.close() to “close” the file when we are
finished reading data from it, as we did in earlier programs that dealt with files.
In fact it is technically unnecessary here as it was earlier, since the operating
system will ensure that the file is “closed” when the program finishes executing.

However, as we have pointed out before, it is always good programming
practice to close any file you have “opened” and used when you are finished
with it, rather than leaving such “housekeeping chores” to the operating system.
And, it is absolutely necessary to do so if, later in the same program, you wish
to use the same file variable inFile, say, to refer to a different physical file. We
do not do this here, but you will want to do it in other situations.

File parameters
must always be
reference parameters.

196 Consolidating 1/0, files, selection, looping, functions

18.4.2.3 Follow-up hands-on activities for display_file_data.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for display.file data.cpp.

You will want to create input data files of your own, but you can begin with
the sample data file shown below.

Contents of the file display file data.in are shown between the heavy lines:

JS <-- These are the student’s initials.
67 59 82 <-- These are the student’s three test marks.

Keep in mind that the program thinks of its input file as in_data when “talking
to” the operating system.

O Activity 2 Copy display.file data.cpp to display_file datal.cpp and bug it
as follows:

a. Remove the & in the function prototype.

b. Remove the & in the function definition.

c. Remove the & in both the function prototype and the function definition.

O Activity 3 Make a copy of display_file data.cpp called display file data2.cpp
and modify the file so that in addition to continuing to do what it already does,
it also writes to an output file called display file data2.out the initials of the
student and the average mark that the student received on the three tests whose
marks are in the input data file. The average mark must be rounded to one
place after the decimal. The output format in the output file must be like this:

Student: JS
Average: 69.3

For this program also do the following: Make ReadAndDisplayFileData into
two separate functions: ReadFileData and DisplayFileData.

(O INSTRUCTOR CHECKPOINT 18.3 FOR EVALUATING PRIOR WORK

and program development 197

18.4.3 read_write.cpp copies data from file to file, and
keyboard to screen, using the same functions for
both transfers

//read_write.cpp

//Reads data from a file, and writes that data to another file.

//Then reads data from the keyboard and writes it to the screen.

//So what? So it uses the *same* read and write functions in *each* case.
//Among other things, this means the input data must have the same format
//in both situations: two lines of data, with two characters on the first

© 0 N e U oA W N e

oLooror gt A R R R R R R R A A LW W W W W W W W W NNNNNNNNNNRS B R R e R e e e
@R R O L X OO O R ® N R OO ®NOOR BN RO O XN OO A ®N RO O ® N0 R ®N RO

//line and three integers on the second.

#include <iostream>
#include <fstream>
using namespace std;

void DescribeProgram();
void ReadData(istream& inFile,
char& firstInitial, char& lastInitial,
int& markl, int& mark2, int& mark3);
void DisplayData(ostream& outFile,
char firstInitial, char lastInitial,
int markl, int mark2, int mark3);

int main()
{

DescribeProgram() ;

char firstI, secondl;
int ml, m2, m3;

ifstream inF;

inF.open("in_data");

ReadData(inF, firstI, secondI, ml, m2, m3);
inF.close();

ofstream outF;

outF.open("out_data");

DisplayData(outF, firstI, secondI, ml, m2, m3);
outF.close();

cout << "With luck, all data has now been transferred from
"\"in_data\" to \"out_data\".\nTo verify this, check the "
"contents of \"out_data\" when the program finishes.\n";

cout << "\nNow enter data from the keyboard:\n";
ReadData(cin, firstI, secondI, ml, m2, m3);

cout << "\n\nHere is the data read in from the keyboard:\n";

DisplayData(cout, firstI, secondI, ml, m2, m3);
cout << endl;

65
66
67
68
69
70
71
T2
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

96
97

99
100
101
102
103
104

198 Consolidating 1/0, files, selection, looping, functions

void DescribeProgram()

//Pre: The cursor is at the left margin.

//Post: The program description has been displayed,

// preceded and followed by at least one blank line.

{

cout << "\nThis program reads data from a file called \"in_data\", "

"and then writes it out\nto a file called \"out_data\". Next it "
"reads the same kind of data from the\nkeyboard and writes it "
"out to the screen. In both cases the input data must\nconsist "
"of two lines with two characters on the first line and three "
"integers\non the second. And be sure that the input data file "
"exists!\n\n";

void ReadData(/* in */ istream& inFile,
/* out */ char& firstInitial,
/* out */ char& lastInitial,
/* out */ int& markil,
/* out */ int& mark2,
/* out */ int& mark3)
//Pre: The file denoted by "inFile" exists, contains data in

// the proper format, and has been opened.

//Post: Data from "inFile" has been read into two char out-parameters
// and three int out-parameters. "inFile" is still open.

{

inFile >> firstInitial >> lastInitial;
inFile.ignore(80, ’\n’);

inFile >> markl >> mark2 >> mark3;
inFile.ignore(80, ’\n’);

void DisplayData(/* out */ ostream& outFile,
/* in */ char firstInitial,
/* in */ char lastInitial,
/* in */ int marki,
/* in */ int mark?2,
/* in */ int mark3)
//Pre: The file denoted by "outFile" exists, and has been opened.

// A1l other parameters have been initialized.

//Post: The values in the two char in-parameters and the three
// int in-parameters have been displayed on "outFile".

// "outFile" is still open.

{

outFile << "\nStudent’s Initials: "

<< firstInitial << lastInitial

<< "\nStudent’s Test Marks: "

<< markl << " " << mark2 << " " << mark3;
outFile << endl << endl;

and program development 199

18.4.3.1 What you see for the first time in read_write.cpp

e A formal parameter of data type istream (in ReadData)

This formal parameter appears in the prototype of ReadData as well as
in the header of the definition of ReadData. But note the two calls to
ReadData in main. In the first one the actual parameter is the input file
stream inF, while in the second it is the standard input cin (i.e., the
keyboard).

e A formal parameter of data type ostream (in DisplayData)

Similarly, this formal parameter appears in the prototype of DisplayData
as well as in the header of the definition of DisplayData. And note the
two calls to DisplayData in main. In the first one the actual parameter is
the output file stream outF, while in the second it is the standard output
cout (i.e., the screen).

18.4.3.2 Additional notes and discussion on read_write.cpp

What this program illustrates is an example of the object-oriented notion of
inheritance, which we do not need to discuss in detail at this point. The concept
of inheritance shows up here in the following way: Both cin and inF are in fact
input streams, though not the same kind of input stream. But since in the
formal parameter list of ReadData we said we were going to pass an “input
stream” of some kind when we called the function, it turns out that we can pass
either cin or inF since both are input streams. In the language of inheritance,
we might say that both cin and inF have “inherited” the properties that are
common to all input streams and that makes either of them eligible to be passed
to ReadData as an actual parameter.

Analogous comments also apply to the fact that cout and outF, though
different kinds of output streams, both inherit the general properties of all
output streams and either is therefore eligible to be passed to DisplayData,
which has been told it will receive an output stream as its first actual parameter
when it is called.

18.4.3.3 Follow-up hands-on activities for read_write.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for read write.cpp. For testing you will again have to create your own
input file(s), but you can use any of the input data files you used for testing the
previous sample program display_file data.cpp.

O Activity 2 Copy read write.cpp to read writel.cpp and bug it as follows:

a. Change the type of the parameter inFile from istream to ifstream in
both the prototype and the definition of ReadData.

An unusual situation

A first encounter

with inheritance, which
helps us deal with the
unusual situation

200 Consolidating 1/0, files, selection, looping, functions

b. Change the type of the parameter outFile from ostream to ofstream in
both the prototype and the definition of DisplayData.

c. Remove the line which closes inF.

d. Remove the line which closes outF.

O Activity 3 The program in read write.cpp first transfers data from one file to
another, then from the keyboard to screen. Make a copy of read write.cpp called

Based on shell.cpp read write2.cpp and modify the copy so that it permits the user to transfer data
from a file either to another file or to the screen, and also from the keyboard
either to the screen or to a file. The program must allow the user to do this as
many times as desired before quitting.

(O INSTRUCTOR CHECKPOINT 18.4 FOR EVALUATING PRIOR WORK

and program development 201

18.4.4 report_wages.cpp contains a shell for a wage
reporting program, with stubs and a main driver

1 //report_wages.cpp

2 //A shell for a wage-reporting program.
3 //Contains a main "driver" and four "stubs" (or "stub functions")
4

5 #include <iostream>

6 using namespace std;

7

s void DescribeProgram();
9 void GetWageData();

10 void ComputeWageInfo();
11 void DisplayWageInfo();
12

13

14 int main()

15 {

16 DescribeProgram() ;
17 GetWageData();

18 ComputeWageInfo();
19 DisplayWageInfo();
20 cout << endl;
21}

22

23

24 void DescribeProgram()
25 //Pre/Post conditions

26 {
27 cout << "\nThis program is wonderful ...\n";
28}

29
30

31 void GetWageData()

32 //Pre/Post conditions

33 {

34 cout << "\nNow inside GetWageData ...\n";
35}

36

37

38 void ComputeWageInfol()
39 //Pre/Post conditions

a0 1

41 cout << "\nNow inside ComputeWageInfo ...\n";
a2}

43

44

45 void DisplayWageInfo()

46 //Pre/Post conditions

ar A{

48 cout << "\nNow inside DisplayWageInfo ...\n";

49}

A chance to put your
program development skills
to work

202 Consolidating 1/0, files, selection, looping, functions

18.4.4.1 What you see for the first time in report_wages.cpp

This program provides the starting point for another exercise in program devel-
opment, complete with stubs and a driver for the top level. This one is based
on an earlier sample program, wages.cpp, from Module 12.

18.4.4.2 Additional notes and discussion on report_wages.cpp

If you look back at the program in wages.cpp from Module 12 you should recog-
nize that if we had had functions at our disposal at that time, then the program
we might have written for wages.cpp could have looked (in outline, at least)
quite a bit like the one we have here.

In fact, suppose we had completed our design for the earlier wages program,
and in the meantime we had learned about functions. Then we could certainly
take the program in report_wages.cpp as a starting point for the actual imple-
mentation of that program. The main thing to observe is that this program
shell contains a main function, which already calls all of the necessary other
functions to perform the required tasks. Of course, none of those other func-
tions actually performs its task at the moment, but the overall structure of the
complete program is in place.

The main function in this context is called a driver for the other functions
which are called stub functions, or stubs, because at the moment they are in-
complete. If we now complete the program by completing each of the stubs in
turn (independently if possible, but occasionally it may be more convenient to
work on more than one stub at a time, in parallel), this approach to the actual
coding parallels our top-down design approach since we will, of course, be using
our pseudocode from that design to complete the stubs.

The next step is to decide on the parameter list for each function, which
is sometimes (as you know) referred to as the interface to the function. Doing
this requires you to decide what information, if any, is to flow into or out of the
function, and to choose suitable names for any data values that must flow in
or out. When each interface has been completed, it can be tested by supplying
“dummy values” to the parameters (via assignment, for example) before the
code that produces the actual values has been written.

Now, the body of each function must be completed. This involves filling in
the code that permits each function to actually do its particular task, according
to the specifications for that function, and guided by the pseudocode for that
function produced during the design phase. Each individual function must be
tested independently as thoroughly as possible when it is finished, and if you are
implementing the design in top-down fashion using stubs and drivers, starting
with your main function as the top-level driver, you will always have a built-in
driver for each completed function.

Finally, when all functions have been completed, you must perform integra-
tion testing, i.e., putting the program through its paces as a whole and making
sure that it solves the original problem (i.e., that it complies with its original
specifications).

and program development 203

18.4.4.3 Follow-up hands-on activities for report_wages.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for report_wages.cpp.

O Activity 2 Make a copy of report_wages.cpp called report_wages1i.cpp and com-
plete the program so that it behaves as outlined below. This is actually an
enhancement of the earlier wages.cpp from Module 12, so you should make an-
other design before proceeding, though the stubs and the driver that you have
in report_wagesl.cpp will serve as the starting point when you begin the actual
coding. The completed program is required to handle only one computation per
run, and must exhibit the following behavior:

a. It must begin by displaying a description of itself.

b. It must then prompt for and read in both a number of hours worked and
a wage rate.

c. Next, it must ompute both gross wages and net wages (see below).

d. Finallly, it must display gross wages, net wages, and deductions, and also
show somewhere in the output display all input data read in.

Gross wages are to be calculated on the basis of a regular week of 35 hours,
with time-and-a-half for overtime. There are two deductions: a 20% deduction
of the gross wages for income tax, and a flat rate of $3.00 per pay for union
dues, and “net wages” are computed by making these two deductions from gross
wages. One of the many things to think about in this problem is the following
question: How should the taxes and union dues be handled? This is a typical
question that arises all the time in this kind of context, and it is worth thinking
about here.

O Activity 3 Make a copy of the program you completed in report_wagesl.cpp
from the previous activity and call it shell_report_wages.cpp. Modify it so that
in a single run it can deal with any number of wage computations, each one like
the one computation handled in report_wages1.cpp.

(O INSTRUCTOR CHECKPOINT 18.5 FOR EVALUATING PRIOR WORK

This program can be
based on shell.cpp.

204 Consolidating 1/0, files, selection, looping, functions

18.4.5 draw_boxes.cpp draws empty boxes using only
punctuation characters

//draw_boxes.cpp

//Prompts the user to enter a punctuation character and

//then uses that character to draw a 4 by 4 "empty" box.

//The box is preceded and followed by a blank line, and centered
//between the left/right margins of a typical 80-column display.
//If the user does not enter a punctuation character, the program
//displays an error message, does not attempt to draw a box,
//and asks the user to try again. The program terminates when
//the user enters the end-of-file character in response to the

10 //request to enter a character for the box border.

© 0 N e U R W N =

13 #include <iostream>
14 #include <iomanip>
15 #include <cctype>
16 ~using namespace std;

18 void DescribeProgram() ;

19 void GetCharFromUser (char& ch, bool& char0K, bool& timeToQuit);
20 void DrawBox(char borderChar);

23 int main()

24 o

25 DescribeProgram() ;

26

27 char borderChar;

28 bool borderChar(OK;

29 bool timeToQuit;

30

31 GetCharFromUser (borderChar, borderCharOK, timeToQuit);
32 while (!'timeToQuit)

33 {

34 if (borderChar0K)

35 DrawBox (borderChar) ;

36 else

37 cout << "Error: Character input was "

38 "not punctuation. Try again ...\n";

39 GetCharFromUser (borderChar, borderChar0OK, timeToQuit);
40 }

41 cout << endl;

42}

43
44 void DescribeProgram()

45 //Pre: The cursor is at the left margin.

46 //Post: The program description has been displayed,

ar [/ preceded and followed by at least one blank line.

as |

49 cout << "\nThis program draws a 4-character by 4-character \"empty\" "
50 "box. It uses a\ncharacter input by the user, and centers the "

51 "box between the left/right\mmargins on a typical 80-column "

52 "display.\n\n";

53 }

54

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

and program development

void GetCharFromUser(/* out */ char& ch,

/* out */ bool& chOK,

/* out */ bool& timeToQuit)
//Pre: None
//Post: ch contains the character entered by the user
// Value of chOK is

// - true if ch contains a punctuation character

// - false otherwise

// Value of timeToQuit is

// - true if user has entered the end-of-file character
// - false otherwise

{

cout << "\nEnter a punctuation character here "
"(or end-of-file to quit): ";

cin >> ch;
timeToQuit = !cin;
if ('timeToQuit)

{

cout << endl;
chOK = (ispunct(ch) != 0);

void DrawBox(/* in */ char borderChar)
//Pre: DborderChar has been initialized.
//Post: A 4 x 4 "empty" box has been displayed,
// using the character in borderChar.
{
cout << endl;
cout << setw(38) << ""
<< borderChar << borderChar << borderChar << borderChar
<< setw(38) << "

<< borderChar << "o << borderChar
<< setw(38) << "
<< borderChar << nwon << borderChar

<< setw(38) << ""
<< borderChar << borderChar << borderChar << borderChar
cout << endl;

<<

<<

<<

<<

endl

endl

endl

endl;

205

Take some time to study the main function of this program. Note that with-
out looking at the the function definitions of the functions called by the main
function you can get an excellent overview of this program and what it does
(though not how it does it). That is, you can ignore the “low-level” details
of the individual functions called by main, and still get the “big picture” quite

nicely, just by “reading” the body of main.

This is an important principle to appreciate and apply: By physically struc-
turing the code in a program properly, the program as a whole can be easily
and quickly understood “up front”, and it is only necessary to pursue lower-level
details in other parts of the source code if you need those details for some other

reason.

206 Consolidating 1/0, files, selection, looping, functions

18.4.5.1 What you see for the first time in draw_boxes.cpp

e The use of decision-making constructs and looping constructs, as well as
several programmer-defined functions (all void, in this case), and every-
thing working together in the same program

e A more “sophisticated” program termination mechanism than we have
seen thus far, involving a flag (i.e., a boolean variable) whose value is
returned to main from the function that tries to get input from the user
(see the use of the boolean variable timeToQuit as a reference parameter
in the function GetCharFromUser)

e Use of the function ispunct () to determine if a character is a punctuation
character

e Use of !cin as an indicator of when it is “time to quit”, in the sense that
when this expression is true, the user has entered the end-of-file character
and the input stream cin has shut down

18.4.5.2 Additional notes and discussion on draw_boxes.cpp

This program permits the user to draw as many 4 by 4 “empty” boxes as the
user desires in a single run of the program, and also performs a check to see
if the character entered by the user for the box border is one of the permitted
characters (i.e., a punctuation character in this case). Also, the program permits
graceful termination by allowing the user to enter the end-of-file character as a
signal that no more boxes are to be drawn. You will be asked to enhance this
program in various ways in the hands-on activities.

18.4.5.3 Follow-up hands-on activities for draw_boxes.cpp

O Activity 1 Copy, study, test and then write pseudocode and draw a design tree
diagram for draw_boxes.cpp.

O Activity 2 Copy draw_boxes.cpp to draw_boxesl.cpp and bug it as follows:

a. Replace 'timeToQuit with timeToQuit in the condition of the while-loop
of the main function.

b. Comment out? the call to the function GetCharFromUser.

2The term comment out, when applied to a code segment, means to turn the lines of
the code segment into comments, usually temporarily, while some sort of test is made or an
alternate code segment is tried. Your editor may provide an easy way to do this.

and program development 207

O Activity 3 Make a copy of draw_boxes.cpp called draw_boxes2.cpp and modify
the copy so that instead of drawing an “empty” box, the program draws a
“filled” box, using two (generally different but possibly the same) characters,
one for the border and one for the interior. The “fill character” for the interior
must also be entered by the user, as well as the border character. In addition,
the user must be able to choose the size of the box (i.e., its width and height
as measured by the number of characters used for each), as well as how many
spaces the box will be indented from the left margin.

You may write the program without error checking on the width, height
and indentation level. That is, you may assume that the user will always enter
values for these quantities that “make sense” and do not run the box over the
edge of the screen. (When you have the program finished in this form, however,
you may wish to extend it by then adding the necessary robustness to reject
user input that is unacceptable or will cause problems. But this is not necessary
on the first pass.)

O Activity4 So far we have almost always had our main function return a 0
value to indicate its “success”, though occasionally (in test_input_stream.cpp
from Module 14, for example) we have seen situations when it clearly should
return some other value to indicate a failure of some sort. But in all cases we
have used the return-statement to return the value.
There is another way to terminate a program which is sometimes used, and
which can also be used to return a value to the operating system just like the
return-statement in a main function. This is the exit() function, which is Using the exit ()
available to us if we include the C++ stdlib library in our program. A call of function from the
exit (0) anywhere in our program will cause the program to end immediately cstdlib library
and indicate a successful termination by returning the value 0 from main, while
the same call with another (non-zero) value could be used to indicate some kind
of failure.
So, another way to end our draw_boxes.cpp program would be to exit from
the program in this way directly from the GetCharFromUser function, as soon
as the user enters an end-of-file character.
Make a copy of draw_boxes.cpp called draw_boxes3.cpp and modify the pro-
gram so that it terminates in this way. Indicate below which of the two methods
of termination you think is “best” and why.

(O INSTRUCTOR CHECKPOINT 18.6 FOR EVALUATING PRIOR WORK

Based on shell.cpp

208 Consolidating 1/0, files, selection, looping, functions

O Activity 5 Make a copy of your completed program in draw_boxes3.cpp from
the previous activity and call it draw boxes4.cpp. Modify the copy so that it
performs exactly as before, except if the box is square and the size is an odd
positive integer greater than or equal to 5. In such a case, instead of drawing a
box with a completely filled interior it will draw a box that is empty except for
an X figure drawn in the interior of the box using the “fill character”.

For example, if the border character is *, the fill character is +, the size is 5,
and the indentation level is 0, then the displayed box would look like this:

*okokok ok
*+ +x
* 4+ %
*+ +x
*okok ok ok

As a second example, if the border character is +, the fill character is *, the size
is 9, and the indentation level is 5, then the displayed box would look like this:

+H+++++++
+x *+
+ * X +
+ % ok +
+ x o+
+ o % o+
+ % ok +
+% *+
+++++++++

(O INSTRUCTOR CHECKPOINT 18.7 FOR EVALUATING PRIOR WORK

O Activity6 Make a copy of draw_boxes.cpp and call it shell draw boxes.cpp.
Then modify the copy so that it incorporates the “shell-like” behavior of pro-
viding a menu with a quit option, a “get information” option, and a “draw box”
option. If the user chooses to draw boxes, then the program should allow as
many boxes as desired to be be drawn before returning to the menu.

(O INSTRUCTOR CHECKPOINT 18.8 FOR EVALUATING PRIOR WORK

Module 19

Miscellaneous programs
illustrating additional
features of C++

19.1 Objectives

To learn what the value ranges are for the character, integer, and floating
point (i.e., real number) data types in your C++ system, as defined by
the system-dependent constants in the climits and cfloat libraries.

To understand how the sizeof operator works, for simple data types.
To understand why the ++ and - - operators deserve extra care.
To understand the dangling else problem and know how to avoid it.

To become aware of some of the subtle pitfalls that can befall a program-
mer if great care is not taken when dealing with conditional expressions.

To understand how the conditional operator 7 : works.

To understand why enumerated types are useful, how they work, and how
to define and use them.

To learn how numbers are represented in different bases, in particular base
10 (decimal), base 2 (binary), base 8 (octal), and base 16 (hexadecimal).

To learn some C++ bitwise operators and understand how they work.

To enhance your understanding of the scope and lifetime of variables.

209

210 Miscellaneous programs illustrating additional features of C+-+

19.2 List of associated files

e limits.cpp displays system-dependent limits for simple data types.
e type_size.cpp displays the size in bytes of some C++ simple data types.

e increment_decrement.cpp shows why you must be careful when using ++
and --.

e dangling else.cpp illustrates the “dangling else” problem.

® bool_errors.cpp illustrates some potential pitfalls to avoid when dealing
with conditional expressions.

e conditional operator.cpp illustrates the conditional operator 7 :.
e enumerated_type.cpp illustrates some properties of enumerated types.

e number bases.cpp displays numbers in decimal, octal, and hexadecimal
form.

e bit_operators.cpp illustrates some C++ bitwise operators.

e scopel.cpp to scope6.cpp contain some “pathological” examples to test
your understanding of variable scope and lifetime.

19.3 Overview

Much as we would like to know everything at once when we start to learn a
new subject, we recognize that this is not possible. And so it is with a new
programming language. This Module fills in a few of the gaps that we have
left along the way in earlier Modules. Many of the things you see here are not
necessary for the vast majority of C4++ programs that you will write, but some
of them may prove very convenient from time to time, and you should, of course,
at least be aware of all of them, if only to be able to recognize and interpret
them when you see them in code written by other C++ programmers.

Some of the things you see in any or all of the sample programs in this Module
you may or may not be seeing for the first time. These sample programs are
meant to be examined and/or discussed in class as the need arises, and if you
have finished all of the other Modules before looking at anything in this one,
which is entirely possible, then some of the features here will certainly have been
seen before. On the other hand, if you've jumped to one of the programs in this
Module from somewhere earlier in the text, then some of the features here that
are “advertised” as being new really will be.

Miscellaneous programs illustrating additional features of C++ 211

19.4 Sample Programs

19.4.1 limits.cpp displays system-dependent limits for
simple data types

//1limits.cpp
//Displays constant values associated with various data types.

#include <iostream>
#include <climits>
#include <cfloat>

© 0 N o U A W N e

[T T T e T
A W N = O © N O oA W N = O

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42

using namespace std;

int main()

{

cout << "\nThis program displays maximum and minimum
<< "values for simple C++ data types.\n\n";

n

//The following named constants are defined in <climits>:

cout << "Number of bits in a byte " << CHAR_BIT << endl;

cout << "Maximum char value " << CHAR_MAX << "\t\t";

cout << "Minimum char value " << CHAR_MIN << endl;

cout << endl;

cout << "Maximum short value " << SHRT_MAX << "\t\t";

cout << "Minimum short value " << SHRT_MIN << endl;

cout << "Maximum int value " << INT_MAX << \t’;

cout << "Minimum int value " << INT_MIN << endl;

cout << "Maximum long value " << LONG_MAX << ’\t’;

cout << "Minimum long value " << LONG_MIN << endl;

cout << endl;

cout << "Maximum unsigned char value " << UCHAR_MAX << endl;
cout << "Maximum unsigned short value " << USHRT_MAX << endl;
cout << "Maximum unsigned int value " << UINT_MAX << endl;
cout << "Maximum unsigned long value " << ULONG_MAX << endl;
cout << endl;

//The following named constants

are defined in <cfloat>:

cout << "Approx # of sig digits in a float " << FLT_DIG << endl;
cout << "Maximum positive float value " << FLT_MAX << endl;
cout << "Minimum positive float value " << FLT_MIN << endl;
cout << "Approx # of sig digits in a double " << DBL_DIG << endl;
cout << "Maximum positive double value " << DBL_MAX << endl;
cout << "Minimum positive double value " << DBL_MIN << endl;
cout << "Approx # of sig digits in a long double " << LDBL_DIG << endl;
cout << "Maximum positive long double value " << LDBL_MAX << endl;
cout << "Minimum positive long double value " << LDBL_MIN << endl;

System-defined constants

Header files

climits and cfloat

System dependencies

Portability questions

212 Miscellaneous programs illustrating additional features of C+—+

19.4.1.1 What you see for the first time in limits.cpp

e A number of system-defined constants'

These are values that differ, or at least potentially differ, from one C++
implementation to another. They determine the largest and smallest val-
ues of the simple built-in data types on your system

e The inclusion of two new C+-+ header files—climits and cfloat—which
contain definitions for these constants

e The C++ style convention for capitalization of built-in named constants

This convention requires all capital letters, with underscore separators
between words. This is the same convention that we follow for our own
programmer-defined named constants.

e Appearance of \t as a single character, within single quotes (rather than
as a string constant, within double quotes)

The effect of outputting either >\t’ or "\t" to the screen is the same.

19.4.1.2 Additional notes and discussion on limits.cpp

Every C++ implementation has a number of system dependencies, such as the
values defined by the constants shown in limits.cpp. The implications of this
may not be serious in your case, but you must be aware of these differences from
one system to another, just in case they do become important.

Just how a system dependency might affect one of your programs, if at all,
will depend on what your program is trying to do. But, for example, since the
maximum size of an int value is one of these system dependencies, a program
which worked fine on one system may fail on another, even though the same
input was used, because a computed value which was within range on one system
was out of range on the other.

Questions such as these often plague programmers in the real world, and
bring up the whole problem of portability. Writing portable programs means
writing programs that are unaffected, or affected as little as possible, by system
dependencies. Like many other decisions in programming, the amount of porta-
bility you want to incorporate into your programs, and the amount of effort you
want to expend to achieve it, is a judgment call. The compromise that usually
has to be made is something like this: You can perhaps make your program
very fancy by taking advantage of all the “bells and whistles” available on a
particular system, but the resulting program will not be very portable and may,
in fact, run only on the system on which it was developed.

INote that any system-defined constant is also what we have called a predefined constant
but a system-defined constant refers specifically to one whose value is not only predefined but
may differ from system to system.

Miscellaneous programs illustrating additional features of C+—+

19.4.1.3 Follow-up hands-on activities for limits.cpp

O Activity 1 Copy, study and test the program in limits.cpp.

O Activity 2 Copy limits.cpp to limitsl.cpp and bug it as follows:

a. Leave out the line that includes the 1imits header file.

213

b. Leave out the line that includes the float header file.

c. Replace INT_MAX with INT_MAKS in line 21.

d. Replace each instance of *\t’ with "\t".

e. Replace "\t\t" with *\t\t’.

O INSTRUCTOR CHECKPOINT 19.1 FOR EVALUATING PRIOR WORK

sizeof computes number
of bytes of storage used

© 0 N U R W N =

N
A W N = O

15
16
17
18
19
20
21
22
23

214 Miscellaneous programs illustrating additional features of C+—+

19.4.2 type_size.cpp displays the size in bytes of some
C++ simple data types

//type_size.cpp
//Displays the byte-size of common data types.

#include <iostream>
using namespace std;

int main()

{
cout << "\nThis program displays a table showing the byte-size of "
"some simple data types,\n(the number of bytes of storage "
"occupied by a value of each data type).\n";
cout << "\nData Type Bytes"
<< "\n "
<< "\nchar " << sizeof (char)
<< "\mnshort " << sizeof (short)
<< "\nint " << sizeof (int)
<< "\nlong " << sizeof(long)
<< "\nfloat " << sizeof (float)
<< "\ndouble " << sizeof (double)
<< "\nlong double " << sizeof(long double);
cout << endl << endl;
}

19.4.2.1 What you see for the first time in type_size.cpp

This program uses the C++ sizeof? operator to obtain the amount of storage
space (bytes) required by a value of each of the simple built-in C++ data types.
19.4.2.2 Additional notes and discussion on type_size.cpp

As you continue to study and learn about new data types, you should keep the
sizeof operator in mind and use it to check the storage requirements of values
in those new data types.

19.4.2.3 Follow-up hands-on activities for type_size.cpp

O Activity 1 Copy, study and test the program in type_size.cpp.
O Activity 2 Copy type_size.cpp to type_sizel.cpp and bug it as follows:

a. Remove the parentheses from (char) to see if they are really necessary.

b. Try the same thing with (long double).

(O INSTRUCTOR CHECKPOINT 19.2 FOR EVALUATING PRIOR WORK

2Note that despite the fact that sizeof is often written in such a way that it looks like a
function, it is actually an operator.

© 0w N e U A W N =

I = B
A W N = O

16
17
18
19
20
21

23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50

Miscellaneous programs illustrating additional features of C++ 215

19.4.3 increment_decrement.cpp shows why you must be
very careful when using ++ and --

//increment_decrement.cpp
//Illustrates why you shouldn’t use ++ or --, except in a
//standalone statement that increments or decrements a variable.

#include <iostream>
using namespace std;

int main()
{
cout << "\nThis program shows you some examples of situations in "
"which the increment\nand decrement operators, ++ and --, are
"sometimes used, but shouldn’t be,\nbecause the code is not "
"very readable, and is fraught with other dangers.\nStudy the "
"code, predict the output in each case, and then ...\n\n";

cout << "Press Enter to continue
cout << endl << endl;

"; cin.ignore(80, ’\n’);

int i, j;

i=4;

j o= i+ + 1

cout << i << " " << j << endl;

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);
i=4;

j o= 441+ 1

cout << i << " " << j << endl;

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);
i=4;

j=1i--+1;

cout << i << " " << j << endl;

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);
i = 4;

jo= i+ 1

cout << i << " " << j << endl;

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

cout << endl;

i = 25;

cout << i << endl;

cout << ++i << endl;

cout << i << endl;

cout << i++ << endl;

cout << i << endl;

cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

Tricky behavior of
operators ++ and --

216 Miscellaneous programs illustrating additional features of C++

19.4.3.1 What you see for the first time in increment_decrement.cpp

This program shows situations in which the increment and decrement operators
++ and -- are not used simply to increment or decrement a variable in a stand-
alone statement (which was the way we have recommended they be used).

19.4.3.2 Additional notes and discussion on increment_decrement.cpp

When you read C++ code that other programmers have written, you will often
see these operators used in ways that we have recommended that they not be
used, and this program is simply meant to be further evidence that our recom-
mendation was not a bad one. Even though we recommend you not program
like this, it will be helpful if you have some idea what is going on when you read
code that uses the operators in this way.

So, if you really must use these operators in non-standalone expressions, or if
you are trying to read code that does, then here is what you need to remember:

e When variable++ is used in an expression, the value of variable is first
used in the expression and then incremented.

e When ++variable is used in an expression, the value of variable is first
incremented and then used in the expression.

And similarly ...

e When variable-- is used in an expression, the value of variable is first
used in the expression and then decremented.

e When --variable is used in an expression, the value of variable is first
decremented and then used in the expression.

Study both the output and the source code of this sample program and make
sure you can reconcile what you see with the above descriptions of the behavior
of these operators.

19.4.3.3 Follow-up hands-on activities for increment_decrement.cpp

O Activity 1 Copy, study and test the program in increment_decrement.cpp.

O INSTRUCTOR CHECKPOINT 19.3 FOR EVALUATING PRIOR WORK

© 0w N e U A W N =

I = B
A W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Miscellaneous programs illustrating additional features of C++ 217

19.4.4 dangling else.cpp illustrates the “dangling else”
problem

//dangling_else.cpp
//I1llustrates the "dangling else" problem.

#include <iostream>
using namespace std;

int main()
{

cout << "\nThis program allows you to analyze the dangling else "
"problem.\nStudy the source code to predict the output for "

"each of these input values:\n9, 5, and O\n\n";
int numberOfDays;

cout << "Enter the number of days it has rained without stopping: ";
cin >> numberOfDays; cin.ignore(80, ’\n’); cout << endl;
cout << "\nStart of first comstruct: ";
if (numberOfDays > 1)
if (numberOfDays <= 7)
cout << "Get out your umbrellas!\n";
else
cout << "Run for higher ground!\n";

cout << "\nStart of second construct:
if (numberOfDays <= 7)
if (numberOfDays > 1)
cout << "Get out your umbrellas!\n";

".
B

else
cout << "Run for higher ground!\n";
cout << endl;

Dangling else
and nested if

C++ is a “free-format”
programming language.

Good formatting helps
to avoid this problem
(and many others!).

218 Miscellaneous programs illustrating additional features of C++

19.4.4.1 What you see for the first time in dangling_else.cpp

Needless to say, difficulties can arise in a program when that program needs
to be told how to make complex decisions. One of those difficulties is the so-
called dangling else problem, which occurs when a code segment containing a
nested-if construct has more occurrences of the keyword if than the keyword
else, as in the (simple) case shown in dangling else.cpp. In such a situation,
the following question arises: With which if is the else (or the final else, if
there are several) actually associated?

You will note that in the given code the formatting suggests that in the first
nested-if the else is associated with the second if, while in the second nested-
if, the formatting suggests that the else is associated with the first if. You
should also recall that because C++ is a free-format language, the formatting
has no effect on how C++ interprets these two code segments.

The answer to the above question in this case is that C++ interprets the code
in the way that the first formatting suggests, and, in general, the “dangling”
else will always be associated with the nearest preceding if that does not
already have a corresponding else.

If we wish to “force” the else to be associated with the first if, then we can
do so by inserting braces. That is, if we really want what the second formatting
suggests that we want, then the second construct should be written as follows:

if (numberOfDays <= 7)

if (numberOfDays > 1)
cout << "Get out your umbrellas!\n";

b
else
cout << "Run for higher ground!\n";

The bottom line is this: The best way to avoid the dangling else problem
is to insert whatever braces are necessary to ensure the code is both highly
readable by humans and properly interpreted by the computer.

19.4.4.2 Additional notes and discussion on dangling_else.cpp

Once again we are reminded that good formatting, though only for the user and
not for the compiler (unlike correct formatting, which clearly is for the compiler),
is very important in our programs. The real lesson to be learned is simply this:
If you format your code so that it is absolutely clear to a human reader what is
to be done, it is quite likely to be absolutely clear to the computer as well.

Miscellaneous programs illustrating additional features of C++ 219

19.4.4.3 Follow-up hands-on activities for dangling_else.cpp
O Activity 1 Copy, study and test the program in dangling else.cpp.
O Activity 2 Copy dangling else.cpp to dangling elsel.cpp and bug it as follows:

a. At the end of the if...else in the first construct, add another else and a
cout statement that displays the string “No weather report!”.

b. At the end of the if...else in the second construct, add another else and
a cout statement that displays the string “No weather report!”.

c. Add braces to force the else in the second construct to be associated with
the first if.

(O INSTRUCTOR CHECKPOINT 19.4 FOR EVALUATING PRIOR WORK

220 Miscellaneous programs illustrating additional features of C+-+

19.4.5 Dbool_errors.cpp illustrates some potential pitfalls to
avoid when using conditional expressions

1 //bool_errors.cpp

2 //The purpose of this program is to highlight some of pitfalls to
3 //avoid when dealing with boolean data values and testing conditioms.
4

5 #include <iostream>

6 using namespace std;

7

8 int main()

o o

10 cout << "\nThis program is designed to freak you out, and "
11 "serve as a warning.\n\nHere’s what you should do:\n"

12 "1. On the first run, enter the values 6, then 3 and 4, "
13 "then 1.2, 2.3 and 3.4."

14 "\n2. Now check the source code and reconcile "

15 "the input and output."

16 "\n3. On the second run, enter the values 7, then 8 and 9, "
17 "then 3.4, 2.3 and 1.2 "

18 "\n4. Now check the source code and reconcile "

19 "the input and output once more.\n";

20

21 int i, j;

22

23 cout << "\nEnter an integer: ";

24 cin >> i; cin.ignore(80, ’\n’);

25 if (i = 6) //First error: What is it?

26 cout << "The value entered was 6.\n";

27

28

29 cout << "\nEnter two more integers: ";

30 cin >> i >> j; cin.ignore(80, ’\n’);

31 if (i == 3 || 4) //Second error: What is it?

32 cout << "The first value entered was either 3 or 4.\n";
33 else

34 cout << "The first value entered was neither 3 nor 4.\n";
35

36 if (i Il j == 4) //Third error: What is it?

37 cout << "One of the values entered was 4.\n";

38 else

39 cout << "Neither value entered was 4.\n";

40

41

42 double x, y, z;

43

44 cout << "\nEnter three real numbers: ";

45 cin >> x >> y > z; cin.ignore(80, ’\n’);

46 if (x <y < 2z) //Fourth error: What is it?

a7 cout << "The values were entered in increasing order.\n";
48 else

49 cout << "The values were not entered in increasing order.\n";
50 cout << endl;

51 }

Miscellaneous programs illustrating additional features of C++ 221

19.4.5.1 What you see for the first time in bool_errors.cpp

In this program you see some examples of the kinds of errors that all C++
programmers are (unfortunately) prone to make. What makes these types of
errors so insidious is that the compiler may or may not complain, the fact that
there has been an error may not always show up in the output, and even when
you discover that there is a problem, the problem may not be easy to find. This
is because in each case the problem code actually does mean something to C++,
just not what you intended it to mean. It is to find errors like these that you
might have to resort to a trace of your program.

19.4.5.2 Additional notes and discussion on bool_errors.cpp

Wonderful language though it is, C++ is nevertheless a bit of a minefield for
the unwary programmer. Part of the reason for this stems from the fact that
one of the design goals for C++4 was to be backward compatible with the C
programming language. C is a wonderful language too, but backward compati-
bility with it meant that C4++ had to retain some of the more unpleasant and
“dangerous” features of the C language. The problem is, as a programmer you
can make some very “natural” mistakes in C++ that will go unnoticed by the
compiler. So, the best advice is, once again: Be vigilant!

19.4.5.3 Follow-up hands-on activities for bool_errors.cpp

O Activity 1 Copy, study and test the program in bool_errors.cpp. (If you get a
warning message from your compiler, you should certainly read it and determine
what it is trying to tell you, but also, for puposes of this activity, ignore it.)

O Activity 2 Perform a trace of the program in bool_errors.cpp by using a copy
of the usual tracing template. You can omit the executable statements that just
give the program description, of course.

O INSTRUCTOR CHECKPOINT 19.5 FOR EVALUATING PRIOR WORK

Backward compatibility
of C++ with Cis a
mized blessing.

The conditional
operator 7 :

© 0 N U R W N =

25
26
27
28
29
30
31
32
33
34

222 Miscellaneous programs illustrating additional features of C+—+

19.4.6 conditional _operator.cpp illustrates the
conditional operator 7 :

//conditional_operator.cpp
//I1llustrates use of the conditional operator ? :

#include <iostream>
using namespace std;

int main()

{

cout << "\nThis program rounds a real number temperature value to "
"an integer, chooses\nbetween a singular and a plural, and "
"chooses the maximum of two integers.\nStudy the source code "
"to see how the conditional operator ? : is used to\naccomplish "
"these amazing feats.\n";

double temp;

cout << "\nEnter a temperature value to the nearest "
"tenth of a degree: ";

cin >> temp; cin.ignore(80, ’\n’); cout << endl;

cout << "Rounded to the nearest integer, the temperature is "
<< (temp >= 0 ? int(temp+0.5) : int(temp-0.5)) << ".\n\n";

int numberQOfTries;

cout << "Enter the number of tries you took to do something: ";

cin >> numberOfTries; cin.ignore(80, ’\n’); cout << endl;

cout << "Wow! You guessed correctly in " << numberOfTries
<< (number0fTries == ? " try.\n" : " tries.\n");

int i, j, max;

cout << "\nEnter two integers: ";

cin >> i >> j; cin.ignore(80, ’\n’); cout << endl;

max = (i >3 7 i : j);

cout << "The larger of the two integers is " << max << ".\n";

cout << endl;

}

19.4.6.1 What you see for the first time in conditional_operator.cpp
This program shows how to use the C++ conditional operator 7 : as an alter-
native to the if...else-statement, though it is best used only in simple cases.

19.4.6.2 Additional notes and discussion on conditional _operator.cpp

The conditional operator is one of those language features that we could do
without if we had to, but which is nevertheless very convenient to have avail-
able from time to time. Most programming languages have features like this—
unnecessary but useful items of one kind or another—and the term syntactic
sugar is sometimes used to refer to them.

19.4.6.3 Follow-up hands-on activities for conditional operator.cpp

O Activity 1 Copy, study and test the program in conditional operator.cpp.

Miscellaneous programs illustrating additional features of C+-+ 223

O Activity 2 Copy conditional operator.cpp to conditional operatorl.cpp and
bug it as follows:

a. Remove the outer parentheses from the following conditional expression,
which appears in line 20, to see if they are needed:
(temp >= 0 7 int(temp+0.5) : int(temp-0.5))

b. Remove the outer parentheses from the following conditional expression,
which appears in line 26, to see if they are needed:
(numberOfTries == ? " try." : " tries.")

c. Remove the outer parentheses from the following conditional expression,
which appears in line 31, to see if they are needed:
G@>j3j 2?2 i : P

What is your explanation for any different outcomes observed in making
the three above changes in the sample program?

O Activity 3 Make a copy of the file conditional _operator.cpp and call the copy
conditional operator2.cpp. Then modify the copy so that each instance of the
conditional operator ? : is replaced by an equivalent if...else-statement. Make
any other necessary changes as well, of course.

(O INSTRUCTOR CHECKPOINT 19.6 FOR EVALUATING PRIOR WORK

224 Miscellaneous programs illustrating additional features of C+—+

19.4.7 enumerated_type.cpp illustrates some properties

of enumerated types

//enumerated_type.cpp
//Illustrates some properties of C++ enumerated types.

#include <iostream>
using namespace std;

int main()

{

cout << "\nThis program illustrates some properties of enumerated "
"data types\nand variables. Study the source code for details.\n";

enum ColorType { RED, WHITE, BLUE }; //Define an enumerated type
ColorType color, myColor, yourColor; //Declare variables of this type

myColor = RED; //Assign enumerated values to
yourColor = BLUE; //variables of the enumerated type

yourColor = myColor; //Assign value of one variable to another

if (yourColor == RED)

cout << "\nThe value of \"yourColor\" is now RED.\n";
else

cout << "\nI don’t know what \"yourColor\" is now.\n";

color = ColorType (RED + 1); //Note how incrementing is accomplished
if (color == WHITE)

cout << "\nThe value of \"color\" is now WHITE.\n";
else

cout << "\nI don’t know what \"color\" is now.\n";

int i;
for (color = RED; //Use of a variable of a
color <= BLUE; //variable of an enumerated
color = ColorType (color + 1)) //type as a loop control variable
{
cout << "The internal integer representation of ";
switch (color) // Use of enumerated variable as case-selector
{
case RED: cout << "RED"; break; //Use of enumerated
case WHITE: cout << "WHITE"; break; //values as case-labels
case BLUE: cout << "BLUE"; break; //in a switch-statement
}
i = color;
cout << " is " << i << ".\n";
}

cout << endl;

//The following statement would cause a compile-time error. Why?
//color = 2;

Miscellaneous programs illustrating additional features of C+-+ 225

19.4.7.1 What you see for the first time in enumerated_type.cpp
e The definition of an enumerated data type using the C++ reserved word
enum
Note that any enumerated data type is a programmer-defined data type,
not a built-in data type.

e The declaration of variables of an enumerated data type and assignment
of values to such variables

e The use of enumerated variables in if-statements and a switch-statement

e The use of an enumerated-type variable as a loop control variable

19.4.7.2 Additional notes and discussion on enumerated_type.cpp

The enumerated data type is another one of those language features that is
not strictly needed. However, enumerated types are very useful in permitting
programmers to “invent” new data types for many situations, and most modern
programming languages include them in some form.

19.4.7.3 Follow-up hands-on activities for enumerated_type.cpp

O Activity 1 Copy, study and test the program in enumerated_type.cpp.

O Activity 2 Copy enumerated_type.cpp tO enumerated_typel.cpp. Begin by “un-
commenting”? the line

//color = 2;

to make it an executable statement. Then try to re-compile the program to

verify that this statement really does cause a compile-time error, and explain
why this happens.

O INSTRUCTOR CHECKPOINT 19.7 FOR EVALUATING PRIOR WORK

3This rather cumbersome term simply means “to turn the comment(s) back into actual
code by removing, in this case at least, the two forward slashes”. It’s cumbersome, but would
“de-comment”, say, be any better? Perhaps “activate” would work ... hmmm ...

enum and
enumerated data types

Be sure you understand
what’s going on here.

226 Miscellaneous programs illustrating additional features of C+-+

19.4.8 number_bases.cpp displays numbers in decimal,
octal, and hexadecimal form

1 //number_bases.cpp

2 //Displays numbers in decimal, octal and hexadecimal form.

3

4 #include <iostream>

5 #include <iomanip>

6 using namespace std;

7

8 int main()

9o {

10 cout << "\nThis program displays numbers in decimal, octal, and "
11 "hexadecimal (\"hex\") forms.\nTo make sense of everything, "
12 "study both the source code and the output.\n\nIn the first "
13 "table below, look at any row. Each value is written using\n"
14 "the same digits (in the source code), but in a different base, "
15 "and is\noutput in (default) decimal format in each case.\n"
16 "Decimal Octal Hex\n"

17 " \n";

18 cout << setw(4) << 6

19 << setw(8) << 06

20 << setw(7) << 0x6 << endl

21 << setw(4) << 14

22 << setw(8) << 014

23 << setw(7) << 0x14 << endl

24 << setw(4) << 123

25 << setw(8) << 0123

26 << setw(7) << 0x123 << endl;

27

28 cout << "\nIn this second table, every number actually has the "
29 "same value (61 decimal),\nbut each of the three rows shows "
30 "the values written using a different base.\n"

31 "Dec/Oct/Hex: 61 075 0X3D\n"

32 " \n";

33 cout << "Decimal: "

34 << setw(6) << 61 //Decimal output is the default.

35 << setw(6) << 075

36 << setw(6) << 0X3D << endl

37 << "Octal: "

38 << setw(B) << oct << 61 //Now we use the "oct" manipulator.
39 << setw(6) << oct << 075

10 << setw(6) << oct << 0X3D << endl

41 << "Hex: "

42 << setw(6) << hex << 61 //And now the "hex" manipulator.

43 << setw(B) << hex << 075

44 << setw(6) << hex << 0X3D << endl;

45 cout << endl;

46}

Miscellaneous programs illustrating additional features of C++ 227

19.4.8.1 What you see for the first time in number_bases.cpp

e C++ rules for designating literal constants as base eight (octal) or base
sixteen (hexadecimal) quantities

e The oct and hex manipulators, which determine the base to be used to
represent subsequent output quantities

19.4.8.2 Additional notes and discussion on number_bases.cpp

Any data value is represented internally in a computer by a sequence of ze-
ros and ones. Another way of saying this is that data representation inside a
computer is based on the binary number system (i.e., the number system with
base 2, in which the only two digits are 0 and 1). More correctly, the internal
representation is based on some physical phenomenon which has two mutually
exclusive and easily identifiable states, such as tiny switches that can be either
on or off, or some other electrical device which can retain a voltage that may
be high or low.

Although very convenient for computers, binary numbers are much less so for
humans. For one thing, the binary representation of numbers soon becomes very
large and unwieldy, even if the quantity being represented is not particularly
large. For that reason, humans are more comfortable using number systems with
bases other than 2. As you are no doubt aware, the decimal number system
that we use in everyday life is the number system with base 10. Two number
systems that are more convenient than the binary number system for working
with computers are the octal (base 8) and especially the hexadecimal (base 16)
number systems.

19.4.8.3 Follow-up hands-on activities for number_bases.cpp

O Activity 1 Copy, study and test the program in number_bases.cpp.

O Activity 2 Copy number_bases.cpp to number_basesl.cpp and bug it as follows:

a. Change the octal number 014 to 019.

b. Make a change that will test whether the oct and hex manipulators are
persistent, i.e., whether they apply to all subsequent values that are out-
put until a new such manipulator is encountered, or whether, like setw,
they apply only to the next value output. This is equivalent to asking
whether each instance of oct and hex used in the program is necessary,
or only the first instance in each case.

(O INSTRUCTOR CHECKPOINT 19.8 FOR EVALUATING PRIOR WORK

Binary numbers
have base 2.

Decimal numbers
have base 10.

Octal numbers
have base 8.

Hexadecimal numbers
have base 16.

228 Miscellaneous programs illustrating additional features of C++

19.4.9 bit_operators.cpp illustrates some of the C++
bitwise operators

1 //bit_operators.cpp

2 //Illustrates the effects of some C++ bitwise operators.

3

4 #include <iostream>

5 using namespace std;

6

7 int main()

s {

9 cout << "\nThis program demonstrates the effect of applying some of "
10 "the C++\nbitwise operators to an integer value.\n\n";

11

12 int i, j;

13

14 i=17;

15 j =1 << 2; //The "left shift" operator

16 cout << i << " left-shifted by 2 becomes " << j << endl;

17 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

18

19 i = 43;

20 j =1 >> 3; //The "right-shift" operator

21 cout << endl << i << " right-shifted by 3 becomes " << j << endl;
22 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

23

24 i = 43;

25 j =1 & 15; //The "bitwise and" operator

26 cout << endl << i << ", after a \"bitwise and\" with 15, becomes "
27 << j << endl;

28 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

29

30 i = 42;

31 j =11 28; //The "bitwise or" operator

32 cout << endl << i << ", after a \"bitwise or\" with 28, becomes "
33 << j << endl;

34 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

35

36 i = 42;

37 j =1 "~ 28; //The "bitwise exclusive-or" operator

38 cout << endl << i << ", after a \"bitwise exclusive-or\" with 28, "
39 << "becomes " << j << endl;

10 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

11

42 i = 2147463647,

43 j = "1, //The "bitwise complement" operator

44 cout << endl << i << ", after a \"bitwise complement\", becomes "
45 << j << endl;

16 cout << "Press Enter to continue ... "; cin.ignore(80, ’\n’);

a7}

Miscellaneous programs illustrating additional features of C+-+ 229

19.4.9.1 What you see for the first time in bit_operators.cpp

This program illustrates the C+-+ bitwise operators shown in the following table:

<< 1left shift, with zero fill on the right

>> right shift, with (usually) sign-bit fill on the left
& logical and

| logical or

- exclusive or

complement

19.4.9.2 Additional notes and discussion on bit_operators.cpp

These operators allow a C++ programmer to manipulate directly the bits stored

in a computer’s memory locations. This sort of low-level programming (or bit A wery brief look,
twiddling, as it is sometimes called, tongue in cheek), is important for systems just in passing
programming, but the average C++ programmer does not have much call for

these operators. You should at least be aware of their existence, and have a

basic knowledge of how each works. However, we do not discuss them further.

If you encounter a situation where you actually have to use one or more of them,

you will want to delve further into their properties (their operator precedence,

for example).

19.4.9.3 Follow-up hands-on activities for bit_operators.cpp
O Activity 1 Copy, study and test the program in bit_operators.cpp. Try chang-

ing some of the numbers and predicting the output for the same operations with
your new values.

(O INSTRUCTOR CHECKPOINT 19.9 FOR EVALUATING PRIOR WORK

230 Miscellaneous programs illustrating additional features of C++

19.4.10 scopel.cpp to scopeb.cpp contain some
“pathological” examples to test your
understanding of variable scope and lifetime

These programs will This sequence of programs gives you an opportunity to take a closer look at the
test not only your notions of scope and lifetime of variables. The programs do not do anything
skill, but also your useful or interesting, so there are no “context clues” to help you determine the
patience and possibly output values. You must understand certain concepts and be able to relate those
your sanity. concepts to the program flow as you trace each program if you are to determine

the correct output.

19.4.10.1 What you see for the first time in scopel.cpp to scope6.cpp

e The use of global variables (variables declared outside any function, and
also called external variables), and how they force you to “look outside”
any function that refers to such a variable to see what the function is doing

e The use of global variables and local variables with the same name

e The use of global variables and function parameters with the same name

This is not really different from the bulleted item immediately above, since
a function parameter has the same scope as a local variable defined in that
function.

19.4.10.2 Additional notes and discussion on scopel.cpp to scope6.cpp

And a valuable One of the lessons to be taken away from your examination of these programs

lesson it is! is how hard it can be to follow the execution flow of programs that contain
global variables. Beginning programming students are often tempted to use
nothing but global variables, since doing so seems to make life easier by making
all variables accessible everywhere to all functions. What could be simpler?

In fact, using global variables is often a recipe for disaster, and the first sign
that a program is on its way to the scrap heap. Take a lesson from history: Early
programming languages sometimes provided nothing but global variables, and
there are many horror stories in the literature detailing the many nightmares
that arose, at least in part, from their use.

So, learning about and appreciating the dangers of global variable use is
important, but understanding the whole (related) notion of scope is also critical
to a full understanding of C++ program structure. In particular, the scope of
a variable refers to the region of a program in which that variable is available
for use, or can be accessed.

The full scope rules of C++ are quite complex, but the key rule to remember,
for the moment, is that once a variable has been declared in a function block,
or in any other block for that matter, it is local to that block and hence:

e It is available throughout the rest of that block (including any interior
blocks, unless it is overridden (i.e., re-declared) by the declaration of an-
other variable with the same name in one of those interior blocks).

Miscellaneous programs illustrating additional features of C++ 231

e But, it is also “hidden” within that block and is unavailable (cannot be
accessed) outside that block.

These two basic ideas, together with the realization that, from a scope point
of view, both the parameters of a function and any variable declared in the
function body are local to the function and unknown outside the function, will
get you through a lot of scope difficulties if you understand them thoroughly.

Thus, implied by all of this is the fact that a variable defined outside any
function (i.e., a global variable), is global in the following sense: Since it is
not “hidden” inside any block, it is known from the point of its declaration
throughout the rest of the file containing the program and hence is available to
all functions that physically follow its declaration in the file. That is, the scope
of a global variable is the entire file from its point of declaration onward, and
therefore (potentially, at least) throughout the entire program if the program
is contained in that one file. And therein lies the source of many problems, so
situations that fit this description should be avoided.

Another notion that it is important to grasp is that of the lifetime of a
variable. This term refers to the length of time that a variable has memory
allocated to it. The simple rule is this: If a variable is declared in a block (say
a function block, or even a while-loop body enclosed in braces), it “comes into
existence” (i.e., has memory allocated to it) when the declaration within that
block is reached, and “goes out of existence” (i.e., has its memory deallocated)
when that block finishes executing. Implied by this, for example, is the fact
that if a variable is declared as a local variable inside a function it “comes and
goes” with each function call, while the lifetime of a variable declared outside
any function (i.e., a global variable) extends from the beginning to the end of
program execution.

Scope of variables

Lifetime of variables

232 Miscellaneous programs illustrating additional features of C++

19.4.10.3 scopel.cpp with follow-up hands-on activities

//scopel.cpp
//A nonsense program to test your understanding
//of variable scope and lifetime.

#include <iostream>
using namespace std;

void DoSomething(int& x);
int a = 7; //Global variables (declared outside any function)

int b 8;
int ¢ 9;

int main()

{
cout << endl;
cout << a << b << ¢ << endl;
DoSomething(a) ;
cout << a << b << ¢ << endl;
}
void DoSomething(int& x)
{
int b; //Local variable (with the same name as a global variable)
a=1;
b = 2; //Which "b" is this, the local or the global?
x = 3;
c = 4;
cout << a << b << ¢ << endl;
¥

O Activity 1 Copy, study, and trace the program in scopel.cpp. Then predict
the output before running the program and comparing the output with your
prediction.

O Activity 2 Copy scopel.cpp to scopela.cpp and bug it as follows:

a. Remove the initializations of the global variables a, b and ¢ (but leave the
declarations).

b. Convert x from a reference parameter to a value parameter.

c. Replace DoSomething(a) with DoSomething(b).

d. Replace the identifier x by the identifier a everywhere in the program.

(O INSTRUCTOR CHECKPOINT 19.10 FOR EVALUATING PRIOR WORK

Miscellaneous programs illustrating additional features of C+—+

19.4.10.4 scope2.cpp with follow-up hands-on activities

//scope2.cpp
//A nonsense program to test your understanding
//of variable scope and lifetime.

#include <iostream>
using namespace std;

char firstChar, secondChar; //Global variables
void P1()

{
char firstChar; //Local to P1

firstChar = ’A’; //Are these
secondChar = ’B’; //local or global?
}
void P2()
{
char secondChar; //Local to P2
firstChar = ’C’; //Are these
secondChar = ’D’; //local or global?
P10);
cout << firstChar << secondChar << endl;
}
int main()
{
cout << endl;
firstChar = ’E’; //Are these
secondChar = ’F’; //local or global?
P20);
cout << firstChar << secondChar << endl;
}

233

O Activity 1 Copy, study, and trace the program in scope2.cpp. Then predict
the output before running the program and comparing the output with your

prediction.
O Activity 2 Copy scope2.cpp to scope2a.cpp and bug it as follows:

a. Remove the declaration of the global variable firstChar.

b. Remove the declaration of the global variable secondChar.

c. Remove the declaration of the local variable firstChar in P1.

d. Remove the declaration of the local variable secondChar in P2.

(O INSTRUCTOR CHECKPOINT 19.11 FOR EVALUATING PRIOR WORK

234 Miscellaneous programs illustrating additional features of C++

19.4.10.5 scope3.cpp with follow-up hands-on activities

//scope3.cpp
//A nonsense program to test your understanding
//of variable scope and lifetime.

#include <iostream>
using namespace std;

int i, j; //Global variables

void P(int& i) //Parameter i is local to P

{
int j; //Local to P

j=6;

cout << i << j << endl; //Which "i" and "j"
i=1i+j; //are being used here?
cout << i << j << endl;

}

int main()

{
cout << endl;
i=3; //Which "i" and "j"
j=4; //are being used here?
cout << i << j << endl;
P(j);
cout << i << j << endl;

O Activity 1 Copy, study, and trace the program in scope3.cpp. Then predict
the output before running the program and comparing the output with your
prediction.

O Activity 2 Copy scope3.cpp to scope3a.cpp and bug it as follows:

a. Convert the function parameter to a value parameter.

b. Change the function call from P(j) to P(i).

c. Convert the function parameter to a value parameter, and change the
function call from P(j) to P(31).

(O INSTRUCTOR CHECKPOINT 19.12 FOR EVALUATING PRIOR WORK

Miscellaneous programs illustrating additional features of C+-+ 235

19.4.10.6 scope4d.cpp with follow-up hands-on activities

//scope4.cpp
//A nonsense program to test your understanding
//of variable scope and lifetime.

#include <iostream>
using namespace std;

void P(int& i, int& j)

{
i = 3x%i;
cout << i << j << endl;
J=i+ g
cout << i << j << endl;
}

int i, j; //Global variables

int main()
{
cout << endl;
i=2;
j=3
cout << i << j << endl;
PG, j);
cout << i << j << endl;

}

O Activity 1 Copy, study, and trace the program in scope4.cpp. Then predict
the output before running the program and comparing the output with your
prediction.

O Activity 2 Copy scope4.cpp to scopeda.cpp and bug it as follows:

a. Remove the first occurrence of & in the function’s parameter list.

b. Remove the second occurrence of & in the function’s parameter list.

c. Remove both occurrences of & in the function’s parameter list.

d. Replace the function call P(j, j) with P(i, i).

[

. Replace the function call P(j, j) with P(i, j).

f. Replace the function call P(j, j) with P(j, 1).

(O INSTRUCTOR CHECKPOINT 19.13 FOR EVALUATING PRIOR WORK

236 Miscellaneous programs illustrating additional features of C+-+

19.4.10.7 scopeb.cpp with follow-up hands-on activities
//scopeb.cpp
//A nonsense program to test your understanding

//of variable scope and lifetime.

#include <iostream>
using namespace std;

int i, j, k, t; //Global variables

void DoSomething(int i, int j)

{
int t; //Local to "DoSomething"
t =1i;
i=13;
=t
cout << i << j << k << t << endl;
}
int main()
{
cout << endl;
i=1; j=2; k=3; t=4;
cout << i << j << k << t << endl;
DoSomething(i, j);
cout << i << j << k << t << endl;
}

O Activity 1 Copy, study, and trace the program in scope5.cpp. Then predict
the output before running the program and comparing the output with your
prediction.

O Activity 2 Copy scope5. cpp to scopeba.cpp and bug it as follows:

a. Convert the parameter i in DoSomething to a reference parameter.

b. Convert the parameter j in DoSomething to a reference parameter.

c. Convert both parameters i and j in DoSomething to reference parameters.

(O INSTRUCTOR CHECKPOINT 19.14 FOR EVALUATING PRIOR WORK

Miscellaneous programs illustrating additional features of C+—+

19.4.10.8 scope6.cpp with follow-up hands-on activities

//scope6.cpp
//A nonsense program to test

your understanding

//of variable scope and lifetime.

#include <iostream>
using namespace std;

int j = 3; //Global variable

void DoThis(int& i, int j)
{

i=3=x*j;
j=4x*1i;
cout << i << " " L j <<

}
int i = 2; //Global variable

void DoThat(int& i)

{
=2 % i
i=3%3;
cout << i << " " L j <<
}
int main()
{
cout << endl;
cin >> i >> j;
DoThat (i) ;
DoThis(j,i);
cout << i << " M << j <<
}

endl;

endl;

endl;

237

O Activity 1 Copy, study, and trace the program in scope6.cpp. Then predict
the output before running the program and comparing the output with your

prediction. Try input values 5 and 7, then 9 and 8, then some of your own.

O Activity 2 Copy scope6.cpp to scope6a.cpp, choose your own “bugs” to insert,
and record both the changes you made and your brief description of the result
below (including output where appropriate):

O Activity 3

O Activity 4

(O INSTRUCTOR CHECKPOINT 19.15 FOR EVALUATING PRIOR WORK

238 Miscellaneous programs illustrating additional features of C++

Appendix A

C++4 Reserved Words and
Some Predefined Identifiers

This Appendix contains a list of all the reserved words in Standard C++, and
a small list of predefined identifiers. Recall (page 3) the distinction between
reserved words and predefined identifiers, which are collectively referred to (by
us, at least) as keywords?.

A.1 C++ Reserved Words

The reserved words of C++ may be conveniently placed into several groups.
In the first group we put those that were also present in the C programming
language and have been carried over into C++. There are 32 of these, and here
they are:

auto const double float int short struct unsigned
break continue else for long signed switch void
case default enum goto register sizeof typedef volatile
char do extern if return static union while

There are another 30 reserved words that were not in C, are therefore new
to C++, and here they are:

asm dynamic_cast namespace reinterpret_cast try

bool explicit new static_cast typeid
catch false operator template typename
class friend private this using
const_cast inline public throw virtual
delete mutable protected true wchar_t

1But be aware that this terminology is not standard. For example, some authors will use
keyword in the same sense that we have used reserved word.

239

240 C++ Reserved Words and Some Predefined Identifiers

The following 11 C++ reserved words are not essential when the standard
ASCII character set is being used, but they have been added to provide more
readable alternatives for some of the C++ operators, and also to facilitate pro-
gramming with character sets that lack characters needed by C++.

and bitand compl not_eq or_eq xor_eq
and_eq bitor not or xor

Note that your particular compiler may not be completely up-to-date, which
means that some (and possibly many) of the reserved words in the preceding
two groups may not yet be implemented.

A.2 Some Predefined Identifiers

Beginning C++ programmers are sometimes confused by the difference between
the two terms reserved word and predefined identifier, and certainly there is
some potential for confusion.

One of the difficulties is that some keywords that one might “expect” to
be reserved words just are not. The keyword main is a prime example, and
others include things like the endl manipulator and other keywords from the
vast collection of C++ libraries.

For example, you could declare a variable called main inside your main func-
tion, initialize it, and then print out its value (but don’t!). On the other hand,
you could not do this with a variable named else. The difference is that else
is a reserved word, while main is “only” a predefined identifier.

Here is a very short list of some of the predefined identifiers you will see here
and elsewhere when you look at C++ code, some of them much more frequently
than others:

cin endl include INT_MIN iostream oct
cout hex INT_MAX iomanip main std

Appendix B

The ASCII Character Set
and Codes

This Appendix displays a table of the Standard ASCII' Character Set and
Codes, which contains 128 characters with numerical codes in the range from 0 to
127 (decimal). There are several “extended” ASCII character sets in use which
contain 256 characters, including characters for drawing “character graphics”
and oddball characters like the “smiley face”, but these do not concern us here.

Let’s make a few observations about the table, some of which may come in
handy when you have to manipulate characters in your programs for one reason
or another.

First, note that the table is presented in four “conceptual columns”, and
that the first one differs from the remaining three since it has two character
columns while the other three have only one. The ASCII characters with codes
in the range 0 to 31 are called control codes and are “invisible”, i.e., they do not
represent printable characters on the screen. Instead they provide a way to give
instructions to peripheral devices such as printers. For example, the character
with code 7 ("G or BEL) will cause the little bell on a terminal to ring when it
is sent. Note that each character has a “CTRL+key” representation using the
~ character to represent the CONTROL (CTRL) key (as in ~G) and a two- or
three-character mnemonic (BEL?).

The remaining characters all represent printable characters, except for the
last (code 127, or DEL), which is also a control code. The one with code 32 is a
special case. This one represents the blank space character which is, of course,
invisible by its nature, but is nevertheless regarded as a printing character since
it moves the cursor one space to the right, leaving a “blank space” behind.

¢

LASCII is an acronym for “American Standard Code for Information Interchange”.

2You need not worry about the meaning of these various mnemonics. Only if you need to
become much more familiar with the ASCII control codes than is required here will you need
to concern yourself with such details.

241

242 The ASCII Character Set and Codes

Here are some other occasionally useful facts about the table:

e The single digits, the capital letters, and the lowercase letters each form
a contiguous group of characters.

e The group of capital letters comes before the group of lowercase letters.

e The number of code positions separating any given capital letter from its
corresponding lowercase letter is 32.

ASCII Table

Each character appears to the right of its numerical code.

0 "@ NUL 32 space 64 @ 9% ¢
1 "A SOH 33 ! 65 A 97 a
2 "B STX 34 " 66 B 98 b
3 °C ETX 35 # 67 C 99 ¢
4 D EOT 36 $ 68 D 100 d
5 "E ENQ 37 % 69 E 101 e
6 "F ACK 38 & 70 F 102 £
7 G BEL 39’ 71 G 103 g
8 "H BS 40 (72 H 104 h
9 "I HT 41) 73 1 105 i
10 °J LF 42 * 74 J 106 j
11 K VT 43 + 75 K 107 k
12 "L FF 44 76 L 108 1
13 "M CR 45 - 77T M 109 m
14 °N SO 46 . 78 N 110 n
15 "0 8I 47 / 79 0 111 o
16 "P DLE 48 0 80 P 112 p
17 ~Q DC1 49 1 81 Q 113 q
18 "R DC2 50 2 82 R 114 r
19 °S DC3 51 3 83 S 115 s
20 °"T DC4 52 4 84 T 116 t
21 "U NAK 53 5 85 U 117 u
22 "V SYN 54 6 86 V 118 v
23 "W ETB 55 7 87 W 119 w
24 “X CAN 56 8 88 X 120 x
25 °Y EM 57 9 89 Y 121 y
26 “Z SUB 58 : 90 Z 122 z
27 [ESC 59 ; 91 [123 {
28 "\ FS 60 < 92 \ 124 |
29 "1 GS 61 = 93 1] 125 }
30 °© RS 62 > 94 ~ 126 ~
31 °_ US 63 7 95 127 DEL

Appendix C

Some C+-+ Operators and
their Precedence

This Appendix contains an abbreviated table of C++ operators and their prece-
dence. C++ is one of the most operator-rich programming languages and the
table presented here contains only those operators that you will encounter (and
some of which you will use frequently) in this Lab Manual.

The table is arranged from highest to lowest precedence as you go from top
to bottom. Operators on the same line have the same precedence. Two groups
of operators with the same precedence extend over more than one line. The
first group is enclosed between lines of dashes, the second between lines of equal
signs.

++ - postfix versions of increment/decrement
++ - prefix versions of increment/decrement
sizeof for computing storage size of data
! logical not
+ - unary, i.e., one-argument, versions
* / % multiplication and division
- addition and subtraction
>> << input and output operators
<= > >= relational
== 1= more relational
&& logical and
I logical or
?: conditional
= *= /= = assignment
= -= more assignment

243

244 Some C++ Operators and their Precedence

Precedence of operators is something that we sometimes take for granted,
particularly if we are thoroughly familiar and comfortable with the standard
precedence rules for the common arithmetic operators. But being too com-
plaisant can put us at some peril, and particularly in a language like C++
which has such a variety of operators it pays to be on our guard.

As a brief example, note from the table that the input/output operators
(>> and <<) have a higher precedence than the relational operators but a lower
precedence than the arithmetic operators. This means that a statement like

cout << 2 + 7;
“does the right thing” and displays a value of 9, while a statement like
cout << 2 < 7;

which you might expect to output 1 (or true), i.e., the value of the relational
expression, in fact causes a syntax error, since the precedence of the operators
involved means that parentheses are required as follows:

cout << (2 < 7);

The example is, of course, somewhat artificial, since it is not that often that
we really want to output the value of a conditional expression, but it makes the
point.

Appendix D

C++ Programming Style
(Guidelines

This Appendix contains a summary of our recommended programming style
guidelines. Your particular guidelines may or may not agree with these, but
you should examine closely what is given here and make any notes about the
differences. For the sake of brevity, few specific examples are given in this
Appendix, but the sample programs throughout the text may be consulted for
illustrations of the points stated here.

D.1 The “Big Three”

a. Name things well!
b. Be consistent!

c. Re-format continually! (This will help to preserve consistency.)

D.2 Spacing and Alignment

a. Put each program statement on a separate line, unless you can make a
very good argument to explain why you didn’t. (For example, you may
be using a C++ idom of some kind.)

b. Use vertical spacing to enhance readability. For example, use one or more
blank lines to separate logically distinct parts of a program.

c. Use horizontal spacing to enhance readability. For example, place a blank
space on each side of an operator such as << or +, unless there is a good
reason for not doing so. (For example, you have a complicated expression
on a long line of code, and omitting some spaces around some operators

245

246

C++ Programming Style Guidelines

will emphasize the association between those operators and their operands,
perhaps making it more readable than it would be with the extra spaces.)

Use an indentation level of four (4) spaces, and always indent in these
cases:

e A function body with respect to the corresponding function header.
e A loop body with respect to the loop construct itself.

e The body of an if and (if present) the body of the corresponding
else. In any if...else statement, the body of statement(s) corre-
sponding to the if should line up with those corresponding to the
else.

e FEach nested loop or nested if-statement should be indented one level
with respect to the enclosing loop or if-statement.

Align the beginning of each statement in a function body (or loop body, or
if body, or else body). Also, place the braces enclosing any such function
body (or loop body, or if body, or else body) on separate lines and align
them with the beginning of the function header (or loop construct, or if
construct, or else construct).

D.3 Naming and Capitalization

The importance of choosing a good name for each program entity cannot be
overemphasized, and the following two items should be regarded as rules:

e Names must be meaningful within their given context whenever possible,

which is most of the time.

One exception to this rule is the use of single-letter loop control variables
in those situations where no particular “meaning” attaches to the variable.

e Names must always be capitalized consistently, according to whatever con-

ventions are being used for each category of name.

The two most common program entities for which you will have to choose

names are variables and functions. Here are the capitalization conventions we
have used in this text:

Variables begin with a lowercase letter, and in fact use all lowercase except

that if the name consists of two or more words the first letter of the second
and subsequent words is capitalized.

Examples: cost, number0fGuesses, valid, timeToQuit

Note as well, and this relates back more to the choice of names, that
variables that represent objects are noun-like, while boolean variables tend
to be more like adjectives.

C++ Programming Style Guidelines 247

Value-returning functions have names like variables and are capitalized sim-
ilarly except that their names begin with a capital letter.

Example: CelsiusTemp
Void functions are capitalized exactly like value-returning functions, but the

names of void functions have one important significant feature that dis-
tinguishes them from value-returning functions:

The name of every void function begins with a verb.

Examples: DescribeProgram, GetPositiveIntegerFromUser

D.4 Commenting

When commenting your code you should strive to be informative without being
excessive. Your goal is to have readable code, and too many comments are just
as counter-productive as too few. Local rules will govern what absolutely must
be included, but we would add the following:

e Always include pre-conditions and post-conditions in a function definition.

e Always place C-style comments in the function header of a function def-
inition to indicate the conceptual nature of the parameters with respect
to the direction of information flow.

D.5 Program Structure

When your entire program is contained in a single source code file, that file
should have the following structure:

e First, comments indicating the name of the file, purpose of the program,
and anything else required by “local authorities”.

e Next, the necessary “includes” for the required header files.

e Definitions for any global constants or data types (but no global variables,
at least not at this stage of your career).

e Prototypes for any required functions, grouped in some intelligent way
that will depend on the nature of the program.

e The main function.

e Finally, definitions for each of the functions whose prototypes appeared
before main, and in the same order as the corresponding prototypes.

248 C++ Programming Style Guidelines

D.6 Miscellaneous

Here are some random thoughts to keep in mind for improving your code, and/or
keeping it “safe”, and you may wish to add more of your own:

a. Use named constants whenever appropriate.

b. Until you become a more “advanced” C++ programmer, only use the
increment and decrement operators in stand-alone statements.

Appendix E

Guidelines for Structured
(Procedural) Program
Development

This Appendix contains a summary of our recommended guidelines when you
are applying the structured (i.e., procedural) approach to program development.
It is worth pointing out that “C++" does not appear in the title. This is
intentional, and a reflection of the fact that these guidelines are essentially
language-independent.

a. Analyze the problem. Analyze it to death if necessary, but do not proceed
until you understand it.

b. Specify what has to be done, but not how to do it. This should include
specification of what the input and output of the final program will look
like, with sample data.

c. Design and develop the algorithm(s) that will accomplish the task at hand.

This is where you apply top-down design with step-wise refinement, draw
design tree diagrams, and write pseudocode. This is also where you test
your algorithms with your sample data from the previous step.

Don’t go near the computer before reaching this point, because:

THE SOONER YOU START CODING, THE LONGER IT’S GOING TO TAKE.

d. Translate your pseudocode into actual code, build your program, and per-
form the edit-compile-link-run-test cycle until you have a complete pro-
gram that will compile, link and run.

This is where you apply top-down implementation and code-testing that
parallels your top-down design from the previous step.

249

Here you describe what
but not how.

Now for the how!

And don’t you forget it!

250 Guidelines for Structured (Procedural) Program Development

e. Once your entire program compiles, links and runs, thoroughly test the
program, putting it through a bank of tests large and detailed enough to
convince you that it does indeed satisfy its original specifications.

f. Complete the documentation for your program, which of course has been
an ongoing effort throughout the development. There are always two
dominant goals to keep in mind when documenting a program:

e Ensuring that the source code is readable.
For this you only need (ideally) to apply the programming style guide-
lines of Appendix D.

e Ensuring that the program has a good user interface when it runs.
This means that the program must:

Describe itself (and identify the programmer(s), if required).
The program may either do this automatically when it runs,
especially in the case of small programs, or it may optionally
provide the information if the user chooses to view it.

Provide good user prompts for all keyboard input.
— Echo all input data somewhere in the output.

Display all output in a way that is “pleasing to the eye”.

Appendix F

Introduction to your
programming environment

F.1 Objectives

e To locate and visit the physical facilities that you will be using.

e To understand what is meant by a programming environment, and to learn
what the major components of your own programming environment are.

e To make sure you have the necessary authority to begin exploring your
programming environment.

F.2 Overview

If you want to learn how to write computer programs, you must become fa-
miliar with the programming environment used on your computer. This means
acquiring at least some knowledge of the operating system, an editor, the lan-
guage translator for the programming language you will be using (a compiler
for C++, in your case), and any local utility programs that may make your life
easier, as well as the policies put in place by those in charge of your system.
This Appendix will help you with that process.

Though there are many different programming environments and we cannot,
therefore, supply all the specific details of the information you will need to know,
we can direct your search for the required information by providing questions for
which you will need the answers that apply to your actual situation, whatever
it may be, and this is the approach that we shall take.

251

Where are the facilities that
you will be using located?

On which days and during
which time periods are they
available for your use?

With what pieces of
equipment will you have actual
physical contact—terminals,
PCs or workstations, printers,
and so on?

What kind of computer will
you be using to do your C++
programming?

Will you need an account and
a password to obtain access to
your computer, or computing
system? If so, how, where, and
from whom do you obtain
them?

What is the name of the
operating system on the
computer you will be using?

252 Introduction to your programming environment

F.3 Questions needing local answers, with
follow-up hands-on activities

The questions posed in the margins of this section will have to be answered,
wherever and whatever your particular programming environment might be. Fill
in the blank space of each cell with the answer(s), for your local environment,
to the question(s) posed next to that cell. Even if there is locally available
documentation or “on-line” help that tells you all you need to know, and possibly
much more, it will be useful to sift through that material and find the answers
to the specific questions posed here. There may, of course, be questions other
than those given below that you will want to have answered as well, and you
are reminded in the hands-on activities at the end of this section to make a list
of these to ask your instructor.

Answer

Answer

Answer

Answer

Answer

Answer

Introduction to your programming environment

253

Answer

Answer

Answer

Answer

Answer

Answer

Answer

Just to keep track of your accomplishments as you work through this Manual,
you may wish to place a check mark in the box that appears at the beginning
of each activity as you complete that activity (or your instructor may require

that you do so).

What is the name of the editor
or other program you will be
using to enter your own
programs?

What are the names of any
other useful utility programs
that you will be using?

You will be programming in
C++, but there are many
versions, or “dialects” of this
language. Which one will you
be using and how does it
compare with Standard C++7

Are there manuals or any
other publicly available
documentation that you might
need from time to time and, if
so, what are they and where
are they located?

Is your computer connected to
a network? If so, what kind of
network?

Does your computer or
network allow remote access?
If so, are there any particular
details of which you should be
aware?

Where can you get further
information on these and
other related topics?

254 Introduction to your programming environment

O Activity 1 Visit the room(s) where you will be working when you start to
use the computer, and locate as many of the components of your programming
environment as you can find.

O Activity 2 Read all of the posted notices that deal with the use of your facilities.
Pay particular attention to the notices regarding printer use. Printers seem to
be a major source of problems in programming environments where many users
are printing to the same device. Remember to leave your printer in the same
condition that you would like to find it in yourself.

O Activity 3 Make a list below of any questions that will need further clarification
from your instructor.

(O INSTRUCTOR CHECKPOINT 6.1 FOR EVALUATING PRIOR WORK

Appendix G

Introduction to your
operating system

G.1 Objectives

e To gain access to the computer and/or account that you will be using.
e To learn how to perform some basic operating system tasks.

e To understand what a file is, and to learn how files are named and managed
in your operating system.

e To understand where the files associated with this Manual are located,
and to learn how to view and/or copy those files.

.2 List of associated files

e cs_names.txt contains some important names in computing science.

e quotes.txt contains some quotations from various sources.

The two files listed above are both textfiles, as indicated by the .txt file
“extension”. This means they contain information that is readable by humans
when the files are displayed on a screen or printed. Both files should also be
available in a public repository ! of some kind on your local system. In fact,
this public repository should contain all of the files associated with all of the
Modules and Appendices in this Lab Manual, and you must learn the structure

I This public repository may be anything from a directory (to which you have read access)
in your instructor’s account, if you are working on a multi-user machine, to a World Wide
Web location for which you will need a URL (Uniform Resource Locator) and a web browser
to access the files. Your instructor will supply the necessary details so that you may read or
copy these files.

255

What are the main groups of
keys on your keyboard, and
what is the purpose of each
group?

256 Introduction to your operating system

of this public repository and how to access the files it contains. You need not
do this all at once, of course, but now is a good time to start. Details will
be provided by your instructor. Later in this Appendix you will get your own
copies of the above files from the public repository. The basic idea is that you
should always know how to find and copy each publicly available file referred to
in this Lab Manual.

G.3 Overview

Every computer needs an operating system. This is a program that runs on
the computer and, among other things, manages all resources used by that
computer, and handles all interaction between the computer and the “outside
world”. Thus, it is the operating system that allows other programs to run
in response to requests from users, sends print jobs to the printer (or to the
appropriate printer if there are several), loads into memory the contents of files
stored on disk, and so on. From Appendix F you know what your operating
system is. In this Appendix you begin to learn how to use it.

G.4 Questions needing local answers, with
follow-up hands-on activities

Once again, the questions posed in the following subsections will have to be
answered, wherever and whatever your particular programming environment
might be. Enter into the blank space in each cell the answer(s), for your local
environment, to the question(s) adjacent to that cell.

Following the question-and-answer cells in each subsection is a sequence of
hands-on activities that you must complete in order to consolidate your knowl-
edge of the items covered in that subsection. Completing each such group of
activities should, of course, be regarded as the minimal effort to be expended in
the given context, and any additional activities that suggest themselves should
be undertaken. Your goal is to be completely comfortable performing the indi-
cated (and similar) tasks.

G.4.1 Keyboard familiarization and (if applicable) logging
in to your computer

Answer

Introduction to your operating system 257

Answer

Answer

Answer

Answer

Answer

Answer

O Activity 1 If you have an account and a corresponding password, begin by
logging in to your account. Be sure to complete any procedures and supply all
information required by the login process.

O Activity 2 If you have successfully logged in, log out and then check to make
sure you have in fact logged out.

G.4.2 Changing your password (if applicable)

Answer

Answer

Are there key combinations
that are important, and if so,
which ones and what do they
do?

If you need to log in to your
computer, how do you
accomplish this?

How do you know that you
have successfully logged in?

Once you have successfully
logged in, how do you log out?

How do you know that you
have successfully logged out?

What are the dangers of not
logging out?

If you have a password to give
you access to your computer
account, how do you change
this password?

What form should your new
password take?

Why should you change your
password, and when (or how
often)?

What should you do if you
forget your password?

If you have changed a
password, you have seen how
to perform at least one task in
your operating system. How,
in general, do you tell your
operating system to do
something?

If your operating system
provides Windows capability,
can you list some tasks which
you can perform using it?

If your operating system
provides a “command line”,
can you list some tasks you
can perform using it?

Record here some additional
useful actions or commands in
your operating system (from
local documentation or from
your instructor).

258 Introduction to your operating system

Answer

Answer

O Activityl If you have an account and corresponding password, log in and
change your password.

O Activity 2 When you have changed your password, log out and then log back
in to test the new password.

O Activity 3 Mentally record your new password, but do not write it down. This
means that it should be easy to remember, but hard for anyone else to guess.

G.4.3 Communicating with your operating system

Answer

Answer

Answer

Answer

Before beginning the following, or any subsequent similar sequence of hands-
on activities, you must of course have already gained access to your computer
workspace in the usual way, whether this is by logging in to your account with
a username and password, or by some other procedure.

Introduction to your operating system

O Activity 1 Try each of the actions or commands that you listed above.

O Activity2 If there is a shortcut or alternate method to perform (or repeat)
any of the commands listed above, then try the shortcut method(s) as well.

G.4.4 Files and file naming conventions, pathnames and

the “public repository”

Answer

Answer

Answer

Answer

Answer

What exactly is a file, and
what are files used for?

What are some different kinds
of files?

What naming conventions for
files does your operating
system use?

Where are the sample files on
your local system?

(This is where you should find,
among other things, the files
for this Lab Manual.) It will
be helpful to draw a diagram
of the structure in the
accompanying space to help
fix it in your mind.

What does a full pathname to
a subdirectory (and to a file)
look like on your system?

(Be sure you know how this
concept of a pathname relates
to the concepts of directory
and subdirectory on your
system.)

What is the location (full
pathname, URL, or whatever)
to the public repository on
your system?

How do you display a list of
all files in your own current
directory (i.e., your own
account)?

How do you display a list of
all files in some other location
(the public repository, say)?

Which kinds of files are “safe”
to display on your screen, or
send to a printer, and which
are not?

How do you display a file on
your screen? First you make
sure it is a textfile, and
then ...

What do you do if you want to
see all of a file that is too large
to be displayed all at once on
your screen?

Does the location of a file
affect the way that you display
it? If so, how?

How do you print a file?
First you make sure it is a
textfile, and then ...

260 Introduction to your operating system

Answer

When responding to the next question, think of your current directory, for the
moment at least, as the storage space to which you are automatically given
access when you turn the computer on and/or log in to your account.

Answer

Answer

O Activity 1 Try each of the two actions or commands that you listed above.
Display a list of all files in your current directory (there may be none at all at
this time).

O Activity2 Take a look at the list of all files associated with this Manual,
wherever they may be located. Make a note of the location of each of the files
cs_names.txt and quotes.txt, which are associated with this Appendix.

G.4.5 Displaying and printing a file (of text, of course)

Answer

Answer

Answer

Answer

Answer

© 0w N U A W N R

I~ T T S S
L N =)

[
o

Introduction to your operating system 261

Answer How do you retrieve a printed
file (often called a hard copy)
from the printer?

Answer What do you do if you have
sent a file to the printer but
for some reason want to delete
the file from the print queue
(i.e. prevent it from printing
at all, or discontinue the
printing if it has already
started)?

O Activity 1 Display on your screen the contents of the file cs_names.txt. You
should see what is shown between the heavy black lines below. Lines like these
are occasionally used throughout this manual to mark the beginning and end
of file contents, except for C++ program files, each of which appears in its own
separate subsection.

Filename: csnames.txt

George Boole Charles Babbage Augusta Ada Byron Herman Hollerith
Alan Turing John V. Atanasoff Howard Aiken Grace M. Hopper

John Mauchley Presper Eckert John von Neumann Stanislaw Ulam
Maurice V. Wilkes John Bardeen Walter Brattain William Shockley
John Backus Donald L. Shell John Kemeny Thomas Kurtz

Corrado Bohm Guiseppe Jacopini Edsger W. Dijkstra Harlan B. Mills
Donald E. Knuth Ted Hoff Stan Mazer Robert Noyce Federico Faggin
Ted Codd Paul Allen Bill Gates Stephen Wozniak Stephen Jobs
Dan Bricklin Dan Fylstra Robert Barnaby William L. Sydnes
Mitchell Kapor Tom Button Alan Cooper Tim Berners-Lee

Marc Andreessen Michael Cowpland Bjarne Stroustrup Ken Thompson
Dennis Ritchie Alan Kay Blaise Pascal Niklaus Wirth

COBOL LISP Smalltalk APL FORTRAN Algol Simula PROLOG
Intel Apple IBM DEC Atari Microsoft Corel Xerox

O Activity 2 Send a copy of the file cs_names.txt to your printer and then retrieve
the printout, or hard copy, of the file from the printer. Be careful to follow
any and all relevant posted instructions when removing your printout from the
printer.

(O INSTRUCTOR CHECKPOINT G.1 FOR EVALUATING PRIOR WORK

O Activity 3 Display on your screen the contents of the file quotes.txt in the
public repository. The file contents you see should be those shown below. If you
cannot see all of the file on your screen, do whatever is necessary to permit you
to view the rest of the file. (You do not have to see all of the file at once.)

<
>

262 Introduction to your operating system

Filename: quotes.txt

- Confidence is the feeling you have before you understand the situation.

- Health is merely the slowest possible rate at which one can die.

- People will buy anything that’s one to a customer.

- Just because you’re paranoid doesn’t mean they AREN’T after you.

- Good leaders being scarce, following yourself is allowed.

- If you can survive death, you can probably survive anything.

- You don’t have to drain the swamp to deal with the alligators.

- It’s easier to seek forgiveness than permission.

- Experience is what causes a person to make new mistakes instead of old ones.

- Experience is that wonderful thing that helps you recognize your
mistakes when you make them again.

- Heuristics are bug-ridden by definition. If they didn’t have bugs,
then they’d be algorithms.

Grabel’s Law: 2 is not equal to 3 -- not even for large values of 2.

As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had
to be discovered. I can remember the exact instant when I realized that
a large part of my life from then on was going to be spent in finding
mistakes in my own programs. (Maurice Wilkes discovers debugging, 1949)
Anyone can hold the helm when the sea is calm. (Publilius Syrus)

Be careful of reading health books; you might die of a misprint. (Mark Twain)

Confession is good for the soul only in the sense that a tweed coat is
good for dandruff. (Peter de Vries)

Democracy is the recurrent suspicion that more than half of the people
are right more than half of the time. (E. B. White)

I generally avoid temptation unless I can’t resist it. (Mae West)

No one can make you feel inferior without your consent. (Eleanor Roosevelt)

I just need enough to tide me over until I need more. (Bill Hoest)

I have the simplest tastes. I am always satisfied with the best. (Oscar Wilde)
If I had any humility I would be perfect. (Ted Turner)

If all the world’s a stage, I want to operate the trap door. (Paul Beatty)

If all the world’s economists were laid end to end, we wouldn’t reach a
conclusion. (William Baumol)

Injustice anywhere is a threat to justice everywhere. (Martin Luther King, Jr.)
Innovation is hard to schedule. (Dan Fylstra)
If you live in a country run by committee, be on the committee. (Graham Summer)

I hate quotations. (Ralph Waldo Emerson)

Introduction to your operating system

O Activity 4 Send a copy of the file quotes.txt to your printer and then retrieve
the hard copy of the file from the printer.
instructions when removing your printout from the printer.

G.4.6 Copying, renaming, appending and deleting files

Once again, be careful to follow

Answer

Answer

Answer

Answer

Answer

Answer

Answer

How do you copy a file from
some other location to your
own directory (with the same
name or a different name)?

How do you make a copy of a
file in your own directory?

How do you rename a file?

How do you append two
textfiles? That is, how do you
add a copy of one textfile to
the end of a second textfile?
(This implies that the second
textfile is altered but the first
one is not.)

How do you create a brand
new textfile that consists of a
copy of one textfile appended
to the end of a second textfile?
(This implies that both of the
original files are unchanged.)

How do you delete a file?

Are there any kinds of files
that you will want to delete
regularly, in order to “clean
up” your account?

Does your operating system
permit direct creation of a
textfile without an editor? If
so, how is it done?

264 Introduction to your operating system

O Activity 1 Make a copy, for your own directory, of the file cs_names.txt, and
give it the same name.

0O Activity 2 Make another copy, for your own directory, of the file cs_names.txt,
and give it the name cs_stuff.txt.

O Activity 3 Make a copy, for your own directory, of the file quotes.txt, and give
it the name quips.txt.

O Activity 4 Make a copy of the file quips.txt, which is in your own directory,
and call it quotes.doc.

O Activity 5 Rename the file quotes.doc to quotes.txt.

O Activity 6 Create a new file called both1.txt by appending a copy of quotes.txt
to the end of a copy of cs_names.txt.

O Activity 7 Create a second new file by appending a copy of cs_names.txt to
the end of a copy of quotes.txt. Call the new file both2.txt.

O Activity8 Append a copy of quotes.txt to the end of cs_stuff.txt and then
rename cs_stuff.txt to names_and quotes.txt.

O Activity 9 Make a list of the files you should now have in your directory, as
well as their contents, and then check to make sure that you do in fact have
those files and their contents are what you expected.

O INSTRUCTOR CHECKPOINT G.2 FOR EVALUATING PRIOR WORK

O Activity 10 Delete, in turn, each of the files you have created in the previous
sequence of activities, checking after each deletion that your directory contains
the files that you think it should.

G.4.7 Creating a short textfile without an editor

Normally you would use a program called an editor (discussed in detail in a later
Appendix) to create a textfile. However, some operating systems provide a way
to enter text into a file on disk directly from the operating system itself. If your
operating system does not permit this, you may simply ignore this subsection.
In any case, such a method for textfile creation should only be used for creating
very short files “on the fly”.

Answer

O Activity 1 Create a short textfile containing your name and address. Call it
my_info.txt. Make sure that each line is indented four spaces and that all lines
are aligned on the left.

O Activity 2 Print a hard copy of my_info.txt.

(O INSTRUCTOR CHECKPOINT G.3 FOR EVALUATING PRIOR WORK

Introduction to your operating system 265

G.4.8 Other useful commands or procedures available in
your operating system

There are, of course, many other useful commands or procedures for performing
various tasks in your operating system, and your instructor may or may not
give you some additional ones now. In any case, you should come back here and
make a note of each new one that you encounter as you proceed.

Answer

Are there some additional
commands or procedures that
you could list right now?

How can you get help with
any questions you might have
on your operating system?

266 Introduction to your operating system

G.4.9 Getting help on your operating system

Answer

O Activity 1 Check the help sources for your operating system, and add at least
two commands or procedures to your list (in the preceding subsection) of “other
useful operating system commands or procedures”.

O Activity 2 Experiment with each of the new commands or procedures you dis-
covered and listed in the previous activity until you are completely comfortable
with its use.

Appendix H

Useful local utilities

H.1 Objectives

e To begin the process of discovering what useful local utility programs are
available to you in your programming environment.

e To find out what each of these utilities will do for you, and how to use it.

H.2 Associated files

Any particular utility available to you may or may not have one or more files
associated with it, or it may simply be a command that you give to the operating
system. Since each programming environment is different, you will have to find
out from your instructor or from local documentation exactly what is available.

H.3 Overview

Programmers like to make life easy for themselves, and for other programmers.
This is why in every programming environment you will find various local util-
ity programs that automate certain tedious tasks, and often depend critically
on the local operating system and/or on other parts of the local programming
environment. You should always look for such utilities when you are beginning
work in a new environment. A little experience will give you a better idea of
what to look for, and this Appendix is designed to get you involved with what-
ever may be available in your own particular local programming environment.
Examples of such utilities might include a facility for the electronic submission
of programming assignments, a tool for the “capture” of certain kinds of screen
activity, and so on.

267

268 Useful local utilities

H.4 Questions needing local answers, with
follow-up hands-on activities

In this section you must fill in each of the following templates (or as many as
you need) to record the necessary information for each of the utilities you will
be using. Following each template are several check-boxes, opposite each of
which you can enter a description of a hands-on activity that you have made up
(or perhaps transcribe one provided by your instructor) for helping you become
familiar with the given utility.

We should say a word or two about the cell in the template that asks the
question, “Where is this utility found, or where does it have to be placed?” This
question may be interpreted in a couple of ways. If a given utility is available
simply by entering a command at the operating system command line prompt,
then this cell can simply be ignored when completing the template. On the
other hand it may be that another utility requires you to know where one or
more files are located, where you yourself must place one or more files, or both.
If so, then that is the information that should be placed in this cell.

Some typical kinds of utilities that may or may not be available in your
programming environment are:

e An e-mail program for communicating with other class members and/or
your instructor(s)

e An electronic passin utility for submitting your homework electronically

e A file transfer utility for uploading/downloading files from your campus
computer system to your home or laptop computer, if you have one

e A compression utility for making your programs “smaller”, so that they
take up less storage space in your account

e An on-line database from which you can access your current marks and
other status information in the course

Remember that this Appendix just begins the process of identifying useful
local utilities. You will probably want to return to this Appendix from time to
time and fill out another template, and you should in fact do so whenever you
encounter another useful utility program during the course. If you are really
lucky, your collection of useful utilities will be so long that this Appendix will
not accommodate them all!

Useful local utilities 269

What is the name of the first utility?

Where is this utility found, or where does it have to be placed?

What does this utility do for you?

How do you use this utility?

Are there any special features or instructions that you should know about?

For further information:

Enter hands-on activities here:

O Activity 1

O Activity 2

O Activity 3

Additional Notes or Comments:

270 Useful local utilities

What is the name of the next utility?

Where is this utility found, or where does it have to be placed?

What does this utility do for you?

How do you use this utility?

Are there any special features or instructions that you should know about?

For further information:

Enter hands-on activities here:

O Activity 1

O Activity 2

O Activity 3

Additional Notes or Comments:

Useful local utilities 271

What is the name of the next utility?

Where is this utility found, or where does it have to be placed?

What does this utility do for you?

How do you use this utility?

Are there any special features or instructions that you should know about?

For further information:

Enter hands-on activities here:

O Activity 1

O Activity 2

O Activity 3

Additional Notes or Comments:

272 Useful local utilities

What is the name of the next utility?

Where is this utility found, or where does it have to be placed?

What does this utility do for you?

How do you use this utility?

Are there any special features or instructions that you should know about?

For further information:

Enter hands-on activities here:

O Activity 1

O Activity 2

O Activity 3

Additional Notes or Comments:

Appendix I

Introduction to your editor

I.1

1.3

Objectives

To learn the difference between a buffer in memory and a file on disk.

To learn how to start up your editor and how to shut it down, with and
without saving on disk the work done since the last “save”.

To learn how to enter text into a buffer in memory.
To learn how to move the cursor from one part of a buffer to another.
To learn how to move and copy text from one part of a buffer to another.

To learn how to find or “find and replace” particular words or phrases in
a buffer.

To learn a number of other useful editing commands and procedures.

List of associated files

singers.txt contains a list of names of some performing artists.

pascal.txt contains notes on the man and the language named after him.

Overview

An editor is itself a program, and a very important tool for any programmer.
It is the program that allows a programmer to enter the source code (instruc-
tions for the computer) for his or her programs into the computer. There are
many different editors available, and you must become familiar, at the earliest
opportunity, with the one you will be using.

273

What is the difference between
a file on disk and a buffer in
memory?

Do you have a stand-alone
editor, or is your editor part
of an IDE?

How do you use your editor to
edit an already-existing file?

How do you use your editor to
create a brand new file?

274 Introduction to your editor

By the way, do not confuse an editor with a word processor. They are very
different things. A word processor (such as Microsoft Word, or Wordperfect)
can usually be used as an editor, but it is usually not wise to do so.

In this Appendix you will learn the basic commands you need to enter, and
later modify, the programs you will be writing. Most editors have many features,
and you should try to keep learning more and more new ways to do things with
your editor as time goes on. Doing so will enhance your productivity, and allow
you to develop your programs in much less time than would otherwise be the
case.

I.4 Questions needing local answers, with
follow-up hands-on activities

Here we go again. Once more the questions posed next to the cells in the follow-
ing subsections will have to be answered, wherever and whatever your particular
programming environment might be. Enter into each cell the answer(s), for your
local environment, to the question(s) adjacent to that cell.

In some programming environments the editor is a stand-alone program,
while in others it is just one part of a more complex program (usually called
an Iintegrated development environment, or IDE for short). If you have such a
system, in what follows whenever we refer to the editor we mean “the editor
part of your IDE”.

1.4.1 Buffers in memory, files on disk, starting and
stopping your editor, and text insertion

Answer

Answer

Answer

Answer

Introduction to your editor 275

Answer

Answer

Answer

Answer

Answer

Answer

Answer

O Activity 1 Use your editor to create a new file called heroes1.txt containing a
list of your four favorite musical artists or groups. Put each one on a separate
line and indent each line four spaces.

O Activity 2 Exit from the editor, saving the file, and then check to make sure
the file is in your current directory.

How do you know your editor
has started successfully?

How do you leave the editor
and at the same time save the
work you have been doing?

How do you leave the editor
without saving the work you
have done?

Does your editor have different
“modes”, such as full-screen
editing mode, line-editing
mode, command mode or
text-entry mode? If so, how
do you change from one mode
to another?

How do you insert text when
you are editing a file?

Does your editor distinguish
between “insert mode” and
“overstrike mode” during text
insertion, and, if so, how?

How do you insert line feeds,
form feeds (page breaks), and
other special characters into
your textfiles? And why would
you want to do this?

How do you move the cursor
forward and backward by a
character, a word or a line at a
time?

How do you move the cursor
greater distances (to the
beginning or end of a line,
or several words or lines at
a time, for example)?

How do you “scroll through”
a buffer, both forwards and
backwards?

How do you move to a
particular location in a file?
To the end or beginning of the
file, or to a particular line, for
example?

276 Introduction to your editor

O Activity 3 Load the file heroes1.txt into your editor and then enter another
artist or group so that you now have a total of five artists or groups. Put the
new one on a separate line and indent as before.

O Activity 4 Exit from the editor, saving the revised file, and then check to make
sure you have what you thought you should have in the location where you
thought it would be.

O Activity5 Load heroesi.txt into your editor again and enter yet another
artist or group, but this time leave the editor without saving, and again check
the result.

I.4.2 Navigation (moving the cursor from one part of the
buffer to another)

Answer

Answer

Answer

Answer

Bw N e

© o N o wu

11
12
13
14

Introduction to your editor 277

O Activity 1 Make a copy of the file singers.txt, and display it, either in your
editor, or using any other method of which you are now aware. You should see
what lies between the heavy lines below.

Filename: singers.txt
4. Jennings, Waylon

2. Presley, Elvis

1. The Oak Ridge Boys

5. Jones, Tom

3. Gayle, Crystal

O Activity2 Load your copy of singers.txt into your editor and experiment
with cursor movement by moving backward and forward a character, a word,
and a line at a time; by moving several words or lines at a time; by moving to a
particular line, say line 7; and by moving to the beginning and end of the file.
Practice these and other cursor movements until you are comfortable with these
minimal “navigational” procedures.

O INSTRUCTOR CHECKPOINT I.1 FOR EVALUATING PRIOR WORK

1.4.3 Deleting text from the buffer

Answer

Answer

How do you delete a character,
a word, or a line from the
buffer?

How do you delete larger
amounts of text (several
characters, words or lines,
for example, or a larger
contiguous “block” of
characters)?

278 Introduction to your editor

O Activity 1 Make a copy of the file pascal.txt and display it in your editor.

You should see the file contents shown below.

Filename: pascal.txt

Pascal, The Man

The programming language Pascal was named after Blaise Pascal. He was a
French mathematician, engineer, scientist and religious philosopher.
Pascal was born in 1623 in Auvergne in central France, and died in 1662.
At the age of 18, he designed a mechanical computing machine capable of
performing simple arithmetic calculations. The machine was "just" a type
of adding machine, and not the kind of programmable device that would be
called a computer in the sense of today’s meaning of the term.
Nonetheless, the machine attracted much attention and became a prototype
for a number of later computing devices. Pascal had a number of models
constructed, and attempted to sell his invention. Unfortunately, its
high price doomed the machine to financial failure.

His calculating machine was only one of Pascal’s many contributions to
science and engineering. He designed the first public transportation
system for the city of Paris, which used horse-drawn carriages. He also
made important contributions to many branches of mathematics, including
geometry, probability theory and hydrodynamics.

Pascal was also a prominent figure in the religious philosophy of his
time. His last and most enduring religious work is his Pensees.

Pascal, The Programming Language

The programming language Pascal was introduced in 1971 by the Swiss
computer scientist Niklaus Wirth. It was originally intended as a
general-purpose, high-level language for teaching the concepts of
structured programming and top-down design. Pascal’s simplicity,
elegance, and embodiment of structured programming principles have made
it quite popular with a wide audience.

Among all the computer languages widely used in recent years, Pascal is
probably the best for demonstrating what structured programming is all
about. It is simple, straightforward, and easy to learn, and it imposes
rules that encourage good programming habits. In addition, Pascal is a
versatile and powerful language that helps users avoid programming
errors. Consequently, large, complex, relatively error-free programs
are easier to write in Pascal than in many other languages.

Designed to be a teaching language, Pascal was not intended to be
employed outside of the academic world, in which it became a very
influential language. However, despite some problems, it was also used
quite widely in the "real world" for a number of years.

O Activity 2 Load your copy of pascal.txt into your editor.

O Activity 3 Practice deleting characters, words, lines and larger blocks of text

until all text has been removed from the buffer.

Introduction to your editor 279

O Activity4 Quit the editor without saving so that the original file on disk
remains intact.

O Activity 5 Repeat the previous three steps until you are comfortable with the
delete commands.

I.4.4 Moving or copying text by “cutting and pasting”

Answer

Answer

O Activity 1 Make a copy of pascal.txt and call it pascall.txt.
O Activity 2 Load pascall.txt into your editor.

O Activity 3 Practice moving and copying characters, words, lines and larger
blocks of text until you are comfortable using all relevant procedures.

O Activity 4 Quit the editor without saving your changes.
O Activity 5 Load pascall.txt into your editor again.

O Activity 6 In line 24, change the phrase “last and most enduring” to “most
enduring and last”.

O Activity 7 Exchange each line of dashes with the line that precedes it.

O Activity 8 Exchange the last two paragraphs in the file, retaining a blank line
between them.

O Activity 9 Finally, exchange the order of the two major sections of the file
(i.e., the section entitled Pascal, The Programming Language must precede
the section entitled Pascal, The Man).

O Activity 10 Exit from the editor, and this time save your changes.

(O INSTRUCTOR CHECKPOINT 1.2 FOR EVALUATING PRIOR WORK

How do you move, or copy, a
character, a word, or a line by
“cutting and pasting”?

How do you cut and paste
larger amounts of text?

How do you find a particular
word or phrase in a buffer,
when searching forward and
backward?

Are searches case-sensitive or
case-insensitive by default,
and how do you change
between case-sensitive and
case-insensitive searches?

How do you “find and replace”
one, several, or all occurrences
of a particular word or phrase?

How do you find, or find and
replace, a “special character”,
such as a tab character, for
example?

280

Introduction to your editor

I.4.5 Finding specific text, and “find and replace”

Answer

Answer

Answer

Answer

O Activity 1 Load the file pascal.txt into your editor and make sure the cursor

is at the beginning of the buffer.

Introduction to your editor 281

O Activity 2 Search forward for each of the following comma-separated words,
phrases, or other text items in turn:

the, The, 1971, forward, is a, years, language Pascal, today’s
O Activity 3 Place your cursor at the end of the buffer and then search backward

for each of the following comma separated words, phrases, or other text items
in turn:

Wednesday, large, in the, 62, ---, real, Pascal, PASCAL

O Activity 4 Try as many other searching examples, of your own choosing, as it
takes to make you comfortable with the searching process (forward and back-
ward, case-sensitive and case-insensitive, as appropriate), then quit the editor
without saving any changes (there should not be any changes to save if all you
have done is search for various things).

O Activity 5 Make another copy of pascal.txt and call it pascal2.txt.
O Activity 6 Load the file pascal2.txt into your editor.
O Activity 7 Find the year 1971 and replace it with 1791.

O Activity 8 Replace each occurrence of the word “religious” in the buffer with
the word “occult”.

O Activity 9 Replace each occurrence of “the” in the buffer with “these”.

Ask yourself the following question, and be sure you know the answer: What does
the previous activity tell me about the care I should take when doing a “global”
search-and-replace, i.e., a replacement of all instances of a certain string with
some other string. (By a string we simply mean a given sequence of characters
considered as a single entity.)

O Activity 10 Finally, exit from the editor, saving your changes to pascal2.txt.

O INSTRUCTOR CHECKPOINT 1.3 FOR EVALUATING PRIOR WORK

How do you save your current
work without leaving the
editor?

Can you recover your work if

some disaster (like a computer
crash) occurs before you have
saved it? If so, how?

What should you do if you try
to leave the editor and save
your changes and you get a
message saying you can’t
because you are “out of disk
space”?

282 Introduction to your editor

1.4.6 Avoiding disasters

You should, of course, always remember to save your work frequently when you
are entering text with an editor, since if something goes wrong you may or may
not be able to recover all or even part of the work you have done since the last
time you saved your entered text to a disk file.

Answer

Answer

Answer

O Activity 1 Try the following experiment: Start your editor with a brand new
file called numbers.txt. Then enter on line 1 the word “one”, on line 2 the word
“two” and on line 3, the word “three”, writing the contents of the file to disk
after entering the contents of each line. Now on lines 4 to 10 enter the words
“four” to “ten”, without writing the contents of the buffer to disk, and then
quit without saving any changes to the file (which is like simulating a computer
crash at this point).

O Activity 2 Now ask yourself (and this time record your answer below) the fol-
lowing question: What do I now have in the file numbers.txt, and what does
this tell me about saving my work regularly to disk when I am editing a file?

O INSTRUCTOR CHECKPOINT 1.4 FOR EVALUATING PRIOR WORK

Introduction to your editor 283

1.4.7 Additional miscellaneous editor commands

Answer

Answer

Answer

Answer

Answer

Answer

Answer

O Activity 1 Be sure to test each of the above commands, after you have entered
it in the cell, until you are thoroughly familiar with its operation.

How do you repeat an editing
command you have just given?

How do you change the case of
a letter, a word, or a phrase?

How do you “refresh” your
screen if it gets “messed up”
in some way (by an incoming
mail message if you are on a
network, for example)?

How do you write out the
entire buffer you are editing
to a file with a different name
that you choose?

How do you write out just
a part of the buffer you are
editing to a separate file on
disk?

How do you indent one or
several lines of a buffer by
“one level of indentation”?

How do you “unindent” one or
several lines of a buffer by one
level of indentation?

How can you get help with
any questions you might have
on your editor?

284 Introduction to your editor

1.4.8 Getting help on your editor

You should plan to study whatever local “guide to the editor” may be available
frequently from now on to increase your command repertoire and thereby make
yourself more productive when working on your C++ programs.

Answer

O Activityl Go to your source of help for your editor and find at least two
additional useful commands that you have not yet encountered. Record these
commands in the space below, and continue to add to the list as time goes on.

Record the date as you add each new editor command below, and be
prepared to show the list to your instructor from time to time, should
he or she ask to see it. This list will be evidence for your instructor,
and reassurance for you, that you have indeed continued to add to
your knowledge of your editor and its commands.

Appendix J

Customizing your
programming environment
with operational shortcuts
and file organization

J.1 Objectives

e To learn about the possibilities for customizing your operating system
and your editor to fit your personal work habits, or to conform to the
programming environment requirements of your class or lab group.

e To organize, in appropriate subdirectories, the files you have already
copied or created, and to create a subdirectory hierarchy for keeping all
files organized as your work progresses.

e To begin the ongoing process of creating and/or recording useful shortcuts
to help you increase your program development productivity.

J.2 Associated files

The files associated with this Appendix fall into two categories:

e first, the particular customization files specific to your system, the details
of which you will record in the appropriate places as you proceed through
this Appendix

e second, all the files you have copied from the public repository, together
with the new files you have created while working with those copied files,
and which now need to be “organized”

285

Customize your working
environment if you can.

Organize your files in
well-named subdirectories.

286 Customizing your programming environment

J.3 Overview

As you continue to work in your programming environment, you will find your-
self repeating certain commands, or actions, or procedures, over and over again.
Whenever you notice this phenomenon, you should ask yourself: Is there a better
way? Can I create a shortcut of some kind?

You will often find that certain programs can be customized to provide such
shortcuts, and, more generally, to better fit your own particular working habits.
Sometimes this is accomplished by choosing certain options within the program
itself, and other times it is done by entering certain options in a separate file
that is read by the program when it starts. For example, it is often possible
to customize either or both of the operating system and the editor to suit your
tastes.

Another thing you will notice before too long is that, as you do the hands
on activities, files will start to accumulate in your personal workspace on the
computer, and it will make your life much simpler if you organize these files
into appropriately named subdirectories. Your instructor may require that your
files be organized in a particular way, or you may have the freedom to choose
your own organizational scheme, but the importance to your peace of mind of
collecting related files and placing them together in a subdirectory whose name
reflects the nature of the collection cannot be overemphasized.

J.4 Questions needing local answers, with
follow-up hands-on activities

Some of the following subsections contain explicit hands-on activities, others just
contain a couple of Activity lablels, each followed by some blank space in which
you can either write your own description of a (platform-dependent) hands-on
activity for working with the topic of that subsection, or perhaps transcribe one
provided by your instructor.

with operational shortcuts and file organization

J.4.1 Customizing your operating system (optional)

287

Does your operating system have a startup command file or a
configuration file of some kind which permits you to customize your
operating system for your particular work habits? If not, then you
should simply ignore this subsection. If so, what is its name and
where must it reside?

Are the contents of this file “activated” automatically when you start
up your computer (or log in to your account), or must you do something
extra to activate them? If so, what?

What are some of the things provided by this file, and how do you use
them?

For further information:

Enter hands-on activities here:

O Activity 1

O Activity 2

288 Customizing your programming environment

J.4.2 Customizing your editor (optional)

Does your editor have a startup command file or configuration file
of some kind which permits you to customize your editor for your
particular work habits? If not, then you should simply ignore this
subsection. If so, what is its name and where must it reside?

Are the contents of this file “activated” automatically when you
start up your editor, or must you do something extra to activate
them? If so, what?

What are some of the things provided by this file, and how do you
use them?

For further information:

Enter hands-on activities here:

O Activity 1

O Activity 2

with operational shortcuts and file organization 289

J.4.3 Creating and using subdirectories on your system

Answer

Answer

Answer

Answer

Answer

Answer

How do you create a
subdirectory (also, on some
systems, called a folder) on
your system?

How do you delete a
subdirectory on your system?

How do you make a particular
subdirectory your current
working directory?

How do you move a file from
one location (subdirectory) to
another?

How do you copy a file from
one location (subdirectory) to
another?

How do you move or copy
several files at once from one
location (subdirectory) to
another?

Sketch in the accompanying
space a hierarchical (i.e.,
“inverted-tree-like”) diagram
of the subdirectory structure
you will be using to organize
and store your files.

290 Customizing your programming environment

O Activity 1 Create a subdirectory called test in your current working directory.
O Activity 2 Move your copy of hello.cpp into the test subdirectory.
O Activity 3 Copy all of your files with a . txt extension into the test subdirectory.

O Activity 4 Make the test subdirectory your current working directory and check
to see that its contents are consistent with the preceding activities.

O INSTRUCTOR CHECKPOINT J.1 FOR EVALUATING PRIOR WORK

O Activity 5 Move hello.cpp back to its original location.

O Activity 6 Delete the subdirectory test and its remaining contents.

J.4.4 Organizing your files

Your instructor may require that you use a particular scheme or structure for
organizing and storing your files as you work through the various Modules. Even
if no specific structure is required in your case, you would be well advised to
design such a structure for your own use.

Answer

O Activityl Create, in your account or in your workspace, the subdirectory
hierarchy that you have sketched above.

O Activity 2 Move each of the files that you have copied or created, while com-
pleting previous hands-on activities, into the appropriate subdirectory created
above, so that the organization of your directory or account is “up to date”.

O INSTRUCTOR CHECKPOINT J.2 FOR EVALUATING PRIOR WORK

with operational shortcuts and file organization 291

J.4.5 Getting more information on customization

Answer Where can you find further
information on the topics of
this Appendix?

J.4.6 Other useful shortcuts

Answer Can you find any additional
useful shortcuts that you can
use in your programming
environment? If so, make a
note of them now, and be sure
to come back and add to the
list as and when you discover
new ones.

O Activity 1 Test each of the shortcuts you record above until you are thoroughly
familiar with how it works.

292 Customizing your programming environment

Index

.cpp file extension, xvi

.dat file extension, xvi

.h file extension, 5

txt file extension, xvi, 255

\" (double quote escaped), 22
\\ (backslash escaped), 22

\n (newline character), 15

\t (tab character), 15

accumulator, 114
accumulator-controlled loop, 114
actual parameters, 154, 168
algorithm, 17

for exchanging two values, 176
algorithm development

in program development, 182
alignment, 8
ampersand character (&)

used to indicate a reference pa-

rameter, 171
ANSI, ix
appending files, 263
arithmetic expressions, 63
arithmetic operators, 63, 87
precedence of, 63, 87
ASCII, see Appendix B, 76, 241
assignment operators, 25, 63, 66, 87
precedence of, 63, 66, 87
assignment vs. initialization, 28
automatic string concatenation, 14
avoiding confusion
by using namespaces, 5

of C++ statements with compiler

directives, 5

when printing a tab character to

the screen, 15

backslash character (\), 20
backward compatibility
of C++ with C, 221
Bell Laboratories, 2
best practices, 49, 129, 148
binary number system, 227
bit twiddling, 229
Bjarne Stroustrup, 2, 49
block, 98, 141, 230
bold font, use of, xv
bool, 87, 104
boolean constants, 87
boolean data type, 88
boolean expressions, 88, 91
boolean operators, 87, 91
precedence of, 87
boolean variables, 87, 91, 104
initialization of, 135
input stream as, 119, 120
braces ({})
enclosing a function body, 4
enclosing a statement block, 98
branching, 96
break, 58, 101
within a switch, 58

buffer, 274
byte, 214
C

relationship with C++, 91, 221
C++

as a case-sensitive language, 4

as a free-format language, 218

keywords, see Appendix A
predefined identifiers, 3
reserved words, 3

libraries, 4

293

294

program structure, 8
programming style, 7
Standard, ix, 88, 253
C-string, 147
call, to a function, 155

capitalization conventions, see Appendix

D

for named constants, 81, 212

for predefined identifiers, 4

for reserved words, 4

for value-returning functions, 155

for variables, 25

for void functions, 165
cart before the horse, 82
case, 58, 101
case-insensitive searches, 280
case-labels, 58, 101
case-selectors, 58, 101
case-sensitive language, see C++
case-sensitive operating system, xvi
case-sensitive searches, 280
cctype, 138
cfloat, 212
changing your password, 257
char, 36
character codes

ASCII, 76

EBCDIC, 76

used on your system, 77
choosing the “best” loop, 116
Churchill, Winston, 7
cin, 33, 36

default behavior of, 36
cin.clear(), 148
cin.get (), 42
cin.ignore(), 42
class, 49
classes vs. data types, 49
clear()

used to clear an input stream, 148
climits, 129, 212
close()

used to close a file, 49
closing a file, 49, 195
cmath, 68
code reuse, x

Index

code segment, 21
coding and testing
in program development, 182
“comment out”, 206
comments, 3
as art form, 8
C-style vs. C++, 158
comparison operators, 87
compile-time errors, 7
compiler directives
include, 5
compiling a program, 9
complete waste of time, 64
complexity, management of, 150
compound boolean condition, 135
compound boolean expressions, 88, 91,
135
concatenation, automatic string, 14
conceptual integrity
vs. operational convenience, 73
conditional expressions, 88, 109, 112,
116
conditional iteration, 116
conditional operator (7:), 222
configuration file
for the editor, 288
for the operating system, 287
console I/0 (standard I/0), 47
const, 81
constants
boolean, 87
named, 81, 129, 154
predefined, 129
system-defined, 212
constructive criticism
of your own work, 2
of your work by others, 2
welcomed by the author, xiv
control codes, 241
control structures, 58
selection, 96
conventions
“8.3” filenames, xvi
capitalization
for named constants, 81, 212
for predefined identifiers, 4

Index 295

for reserved words, 4 of a real variable, 28
for value-returning functions, 155 of a string variable, 147
for variables, 25 of an enumerated variable, 225
for void functions, 165 of an integer variable, 25
file naming, xvi, 259 declare before using, 155
for programming style, 7 decrement operator, 66, 216
naming, see naming conventions default, 101
typographic, xv option in switch-statement, 101
copying files, 263 default output format
correct formatting for integer values, 25
vs. good formatting, 218 for real numbers (i.e., floating point
count-controlled loop, 110 numbers), 27
cout, 5 overriding, 25
used to “output an arithmetic ex- define before using, 155
pression”, 63 definite iteration, 116
cout.setf (), 25, 27 deleting files, 263
crash, of a program, 36 design goals
creating a file for hands-on activities, xi
with an editor, 274 for programs, 2
without an editor, 264 understandability, 8
cstdlib, 189, 207 design methodology, 190
curly brackets, see braces design process, 82
current working directory, 289 design tree diagrams, 82
cursor and top-down design, 82
positioning in the output, 36 example of, 83, 185
cycle directory, 259
edit-compile-link-run-test, 8 setting your current working, 289
displaying a file, 260
“dangling else” problem, 218 divide and conquer, 14
data types division
and typedef, 92 integer, 63
boolean (bool), 88 real, 63
character (char), 36 division-by-zero error, 126
enumerated (enum), 225 do, 58, 112
input file (ifstream), 49 do...while, 112
integer (int), 23, 25 do...while-loop
output file (ofstream), 49 formatting of, 113
real number (double), 23, 28 documentation, 158
string (string), 147 in program development, 183
data types vs. classes, 49 double, 36
decimal number system, 227 double quote character ("), 22
decision-making, 96 double-headed arrow
declaration and information flow, 185
close to use, 36 down-arrow
of a boolean variable, 87 and information flow, 185

of a character variable, 36 drivers, 187

296 Index

drop-down menu, 59 testing for, 143
end-of-file-controlled loop, 119

EBCDIC, 76 enum, 225
echoing input in the output, 81 enumerated data types, 225
edit-compile-link-run-test cycle, 8 errors

compile, 9 compile-time, 7

edit, 9 division-by-zero, 126

link, 9 logic, 7

run, 9 name-conflict, 92

test, 9 possible file input, 143
editing a file run-time, 7

copying text, 279 semantic, 7

“cutting and pasting”, 279 syntax, 7

deleting text, 277 escape sequences, 15

disaster avoidance, 282 \", 22

discarding your work, 275 \\, 22

editor modes, 275 \n, 15

find and replace, 280 \t, 15

finding special characters, 280 executable file, 9

finding text (searching), 280 exit (), 189, 207

global find and replace, 280 expressions

inserting special characters, 275 arithmetic, 63

inserting text, 275 boolean, 88

moving text, 279 compound, 88

moving the cursor, 276 conditional, 88

saving your work, 275 compound, 88

searches, 280 simple, 89

case-insensitive, 280 logical, 87
case-sensitive, 280 relational, 88

editing a program extraction operator, 36

as part of the edit-compile-link-run-

test cycle, 9 facilities, local, 252-254

editor, 273 false, 87

creating a file with, 274 field, 15

getting help on, 284 fieldwidth, 15

starting, 274 file extensions

stopping, 275 .cpp, xvi, 7
else, 98 .dat, xvi

“dangling”, 218 h, 5
embedded debugging code, 132 Axt, xvi, 255

and tracing, 84 file naming conventions, xvi, 259
empty string, 16 files
encapsulation, 176 appending, 263
end-of-file character as parameters, 195, 199

on your system, 120 closing, 49

system-dependence of, 120 copying, 263, 289

Index

creating
with an editor, 274
without an editor, 264
deleting, 263
displaying, 260
input to and output from, 49
kinds of, 259
moving, 289
opening, 147
printing, 260
reading values from, 49
renaming, 263
writing values to, 49
files for this Manual
location of, 259
fixed point format, 27
fixed point notation, 28
flag-controlled loop, 111
flags
as loop controls, 111
for program termination, 206
output formatting
fixed, 27
showpoint, 27
flow of control, 58
font style
bold, use of, xv
italic, use of, xv
slant, use of, xv
typewriter, use of, xv
for, 116
for-loop, 116
formatting of, 116
formal parameters, 154, 168
formatting errors, 30
forward slash character (/), 20
free-format, 218
fstream, 49
full pathname, 259
function
body, 4, 153
enclosed by braces, 4
call, 153, 155, 180
definition, 4, 153, 180
header, 4, 153
parentheses used in, 4

interface, 158, 187
invocation, 153, 155
main, 4
mathematical

abs, 68

pow, 68

sqrt, 68
post-conditions, 158
pre-conditions, 158
programmer-defined, 151, 153
prototype, 158
return-value, 151
statements, 4
stub, 187
terms and concepts, 161
value-returning, 153, 162
void, 162

global constant

as on-off switch for debugging,
global variables, 230

lifetime of, 231

scope of, 231

vs. local variables, 141, 230
good formatting

using to avoid problems, 218

vs. correct formatting, 218
graceful termination, 206
graphical user interface, 59

hand-trace, 84
hex, 227

persistence of, 227
hexadecimal number system, 227
“hidden” variables, 231
hierarchy, subdirectory, 285
horizontal spacing, 7
horse before the cart, 82

IBM, 76
IDE, 274
idiom, 245
involving cin.ignore(), 39
if, 98
if-statement
formatting of, 98

297

132

298

ignore ()
used with file input, 195
used with keyboard input, 36
implementation, 17
implementor, 18
in-parameters, 153, 154
include, 5
increment operator, 66, 216
indefinite iteration, 116
indentation level
of statements in function body, 7
of statements in if...else, 98
of statements in loop body, 58
indenting an output line, 16
infinite loop, 110
information flow
direction indicated by arrows, 185
direction of, in a function, 162
via function parameters, 180
inheritance, 199
initialization vs. assignment, 28
initializing loop control variable
in a do...while loop, 113
in a for-loop, 116
in a while-loop, 110
inout-parameters, 153, 176
input stream
as a boolean variable, 119, 120
cin, 36
state of, 143
input-file errors, 143
insertion operator, 1, 5-7
INSTRUCTOR CHECKPOINT, xi
int, 4, 25
integer division, 63

integrated development environment, 274

integration testing, 188, 202
interface to a function, 158, 187, 202
invocation, of a function, 155
iomanip, 15

iostream, 4

islower(), 138

ISO, ix

ispunct (), 206

isupper(), 138

italic font, use of, xv

Index

keyboard familiarization, 256

keyboard image, 50

keywords, see Appendix A, 3, 239
predefined identifiers, 3
reserved words, 3

Knuth, Donald, 183

leading whitepace, 36
learn by doing, 2
learn by example, 2
learning to program, 2
libraries, 4
cctype, 138
cfloat, 212
climits, 129, 212
cmath, 68
cstdlib, 189, 207
fstream, 49
iomanip, 15
iostream, 4
lifetime of variables, 151, 154, 231
linking a program, 9
literal values
of type integer, 25
of type real (floating point), 27
local facilities, 252-254
local variables, 154, 230
vs. global variables, 141, 230
within a block, 141
logic errors, 7
“logical chunks”, of code, 150
logical expressions, 87
logical operators, 87
loop
accumulator-controlled, 114
body of, 109, 112, 116
choosing the “best”, 116
condition, 116, 135
count-controlled, 110
do...while, 58
end-of-file-controlled, 119
flag-controlled, 111
for, 116
iteration, 109
multiple conditions in, 135
post-test, 58, 113

Index

pre-test, 110
sentinel-controlled, 119
while, 109

loop control variable, 110

declaration inside for-loop, 119

initialization of, 110
modification of, 110
looping, 56, 108, 124

together with selection, 56, 126

loops

nested, 119

sequential, 116
low-level programming, 229

main function, 4
mainframe, 76
managing complexity, 150
manipulators
endl, 6
hex, 227
oct, 227
setw(), 15
manual trace, 84
margin notes, xv
mathematical functions, 68
memory
allocated, 231
deallocated, 231
menu-driven program, x, 56, 58
Microsoft Word, 274
“mini-application”, 81
modifying loop control variable
in a do...while-loop, 112
in a for-loop, 116
in a while-loop, 110
modularity, of a program, 180
Module structure, x
modulus operator (%), 63
mouse click, 59
multi-way decision, 58, 101
multiple loop conditions, 135

name-conflict error, 92

named constants, 81, 129, 138, 154

advantages of using, 81
namespaces, 9

std, 5

299

naming conventions, see Appendix D
for value-returning functions, 155

for void functions, 165
natural choice
for a do...while-statement, 58
for a switch-statement, 58
nested decision-making, 95
nested loops, 119
general structure of, 119
when to use, 119
nested-if construct, 98
newline character (\n), 15
inserted by endl, 6
problem caused by extra, 40
notation
fixed point, 28
scientific, 28
null string, 16
number system
binary, 227
decimal, 227
hexadecimal, 227
octal, 227

object file, 9
object-oriented methodology, 181
objects vs. variables, 49
oct, 227
persistence of, 227
octal number system, 227
open()
used to open a file, 147
operating system, 256
case-sensitivity of, xvi
communicating with, 258
getting help on, 266
operational convenience
vs. conceptual integrity, 73
operator
arithmetic, 63
assignment, 25
boolean, 87
comparison, 87
decrement, 66, 216
extraction, 36

300

increment, 66, 216

insertion, 1, 5-7

logical, 87

modulus, 63

relational, 87

special assignment, 66
operator precedence, see Appendix C,

63

table of, 63, 87
out-parameters, 153
output

of text and integers, 25

of text and real numbers, 28
output format

default for integers, 25

default for real numbers, 27

overriding default, 25

programmer-defined, 25
output stream, 5

cout, 5
overloaded functions, 176

when to use, 176
overriding a variable, 230

parameters, 151
actual, 154, 168
files as, 195, 199
formal, 154, 168
function with no, 164
in, 153, 154
inout, 153, 176
out, 153
reference, 162, 171
value, 154
parentheses
in do...while-loop, 112
in for-loop, 116
in function header, 4
in while-loop, 109
used for clarification, 63
pass
through a do...while-loop, 112
through a for-loop, 116
through a while-loop, 109
password
changing, 257

Index

forgetting, 258

form of, 257
pausing a program, 39
pedagogical approach, xiii
pencil-and-paper trace, 84
persistence

of boolalpha, 89

of setw(), 15

of hex, 227

of oct, 227

of setprecision(), 28
placement of call

to a value-returning function, 155

to a void function, 162
platform independence, ix
portability, 212
portability problem, 119, 120
portable programs, 212
positioning the cursor, 36
post-conditions, 158, 165
post-test loop, 58, 113
pre-conditions, 158, 165
pre-test loop, 110
precedence

operator, see Appendix C

table of operator, 63, 87
predefined constants, 129
predefined identifiers, 4, 239
printing a file, 260
problem analysis

in program development, 181
problem specification

in program development, 182
problem-solving phases

in program development, 184
procedural approach, 181-184
productivity

increasing your, 2
program

crash, 36

development process, 181

extensible shell, 59

graceful termination of, 206

modifiable shell, 59

modularity, 180

portable, 212

Index 301

robust, 76 prompts, 36
shell, 58, 187 prototype, of a function, 158
structure, 8, 165, 180 pseudocode, 17

program design methodologies for a menu-driven program, 59
object-oriented, 181 public repository, 255

top-down design with step-wise re- putting it all together, 81
finement, 13

program development, 181184 range robustness, 135
algorithm development in, 182 re-declaring a variable, 230
coding and testing in, 182 readability, 16, 183
documentation in, 183 reading values
guidelines, see Appendix E from a file, 49
problem analysis in, 181 from the keyboard, 36, 147
problem specification in, 182 reading whitespace, 42
problem-solving phases in, 184 real division, 63
program testing in, 183 reference parameters, 171
solution-implementation phases in, actual must be variables, 171

184 relational expressions, 88, 91

program development process, 184 relational operators, 87, 91

program testing precedence of, 87
in program development, 183 renaming files, 263

programmer vs. user, 34 repetition, 108

programmer-defined constants, 138 required subdirectories, 290

programmer-defined functions, 82, 151, reserved words, see Appendix A, 239

153 bool, 87

programming break, 58, 101, 112
compared with other activities, xii case, 58, 101
low-level, 229 char, 36
methodology, 181 class, 49
procedural, 181 const, 81
procedural or structured approach, default, 101

181-184 do, 58, 112
structured, 181 double, 36
systems, 229 else, 98

programming environment enum, 225
what you need to know, 251 false, 87

programming style, 7 for, 116
alignment, 8 if, 98
guidelines, see Appendix D int, 4
horizontal spacing, 7 lowercase used for, 4
indentation level, 7 namespace, 5
self-documenting programs, 8 return, 4
some reminders, 183 sizeof, 214
understandabilty, 8 switch, 58, 101
vertical spacing, 7 true, 87

whitespace around operators, 91 typedef, 83

302

using, 5

void, 164

while, 58, 109
return, 4

return-value of 0, 4

return-value other than 0, 143
return-value, 4, 151, 162
returning a value, 155
reverse-engineering, 192
right-justification with setw(), 15
robust program, 76, 126
robustness

range, 135

type, 135
rounding

of floating point values, 73
run-time errors, 7
running a program, 9

scientific notation, 28
scope
of a named constant, 154
of a variable, 230
screen image, 50
selection, 56, 96, 124
together with looping, 126
selection statement
if, 98
switch, 58, 101
self-documenting programs, 8
semantic errors, 7
semantics, 6
sentinel-controlled loop, 119
sequential decision-making, 95
sequential execution, 124
sequential loops, 116
when to use, 117
sequential-if construct, 98
setf (), 27
setprecision(), 28
persistence of, 28
setw(), 28
left-justification with, 25
persistence of, 15
right-justification with, 15
shell program, x

Index

with menu, selection and repeti-
tion, 58
with stubs and driver, 187
short-circuit evaluation, 91
simple conditional expressions, 89
sink or swim, xii
sizeof operator, 214
slant font, use of, xv
software debugger, 84
software developer, 2
software engineering, 184
solution-implementation phases
in program development, 184
specifications, 17, 182
Standard C++, ix, 88, 253
standard I/O (console 1/0), 47
startup command file
for the editor, 288
for the operating system, 287
std namespace, 5
step-wise refinement, 13
streams
input (cin), 36
output (cout), 5
string concatenation, automatic, 14
strings, 6, 34, 281
C++ style, 147
C-style (as used in C), 147
constant, 6
empty or null, 16
Stroustrup, Bjarne, 2, 49
structure diagram, 82
structure of a C++ program, 8
with functions, 165
structured approach, 181-184
structured programming, xiv
stub functions (“stubs”), 187, 202
style vs. substance, xiv
subdirectories, 259, 285, 286
copying files between, 289
creating, 289
deleting, 289
hierarchy of, 285
moving files between, 289
required hierarchy of, 290
substance vs. style, xiv

Index

switch, 58, 101
switch-statement
formatting of, 101
syntactic sugar, 222
syntactically correct, 6
syntax, 6
syntax errors, 7
system-defined constants, 212
system-dependence
of end-of-file character, 120
of some named constants, 212
systems programming, 229

tab character (\t), 15
compared with "\t", 212
tab stops
default positions of, 15
moving the cursor to, 15
table
of operator precedence, 63, 87
termination mechanism
for a program, 206
termination value
for a loop, 109
testing
a program, 9
integration, 188, 202
textfiles, 255
top-down design, 13
top-level pseudocode, 18
tracing a program, 83, 230
true, 87
type casting, 73
type coercion, 73
type conversion, 71
explicit (type casting), 73
implicit (type coercion), 73
type robustness, 135
type-safe, 73
typedef, 88, 92
typewriter font, use of, xv
typographic conventions, xv

“un-commenting”, 225
underscore character (_), 81
understandability, 8

up and running, 8
up-arrow

and information flow, 185
URL, 255, 260
user interface, 2, 16, 158, 165, 183
user prompts, 36
user vs. programmer, 34
user-friendliness, 16, 183
utility programs, 267-272

value parameters, 154
possibilities for actual, 169
value-returning functions, 153
variables
accessibility, 141
“hidden”, 231
initialization, 28
lifetime of, 151, 154, 231
local, 154
local vs. global, 141
overriding, 230
re-declaring, 230
scope of, 151, 230
vs. objects, 49
vertical spacing, 7
void, 164
void function, 162

waste of time

complete, 64
while, 58, 109, 112
while-loop

formatting of, 110
whitespace, 36

around operators, 91

ignored by cin, 36

leading, 36

reading with cin.get (), 42
Winston Churchill, 7
“word problem”, 68
word processor, 274
Wordperfect, 274
writing values

to a file, 49

to the display screen, 25
wrong input

303

304 Index

and program crashes, 36

