c2g(n)
cg(n) &

f(n) f(n)

fo) cg(n)

clg(n)

no n n
@) (b) ©

llustrating the (a) O, (b) @, and (c) ® notations

e f(n) = O(g(n)) means c-g(n)is an upper bound on f(n). Thus there exists some
constant ¢ such that f(n) is always = ¢ - g(n), for large enough 1.

e f(n) = Mg(m) meansc-g(n)isa lower bound on f(n). Thus there exists some
constant ¢ such that f(n) is always = c - g(n), for large enough 7.

e f(n) = O(g(n)) means ¢y - g(n) is an upper bound on f(n) and ¢z - g(n) is a
lower bound on f(n), for large enough n. Thus there exists constants ¢; and
¢, such that f(n) = ¢y -g(m)and f(n) = ¢z g(n). This means that g(n)is a nice,
tight bound on f(1).

TABLE 3-1 VARIOUS ORDERS OF MAGNITUDE

n log,n n log,n n? n A

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65,536

32 5 160 1024 32,768 4294 967,296
128 7 896 16,384 2,097,152 3.4 % 10%
1024 10 10,240 1,048,576 1,073,741,824 1.8 X 10°®
65,536 16

1,048,576 4,294,967,296 2.8 x 10" Forget it!

Table 3-1 gives the linear, quadratic, cubic, exponential, and logarithmic orders
of magnitude for selected values of n. Clearly, you should avoid cubic and exponen-
tial algorithms unless n is small.




