Random Numbers and Random Number Generators

Objectives

To learn what random numbers and pseudorandom numbers are.

To understand why such numbers are useful.

To learn how pseudorandom numbers are generated by a computer.

To understand how some C++ functions from the Standard Library—rand, srand, clock, and time—fit into the picture.

Some motivational discussion

Most of what we do with computers is deterministic in the extreme. That is, we are able to determine in advance the precise outcome of a given sequence of actions by the computer, and the computer always performs the same instructions in the same way on a given set of input data. This, in fact, is the whole basis of our top-down design and step-wise refinement of algorithms and if it were not the case, programming would be an even more chaotic activity than it sometimes seems even now.

However, as we are all aware from our daily experiences, life is not always like that. Often we undertake an action or sequence of actions “under uncertainty”. For example, we buy stocks, bonds and lottery tickets, we get married and have children, and we jaywalk almost every time we go downtown.

Extreme uncertainty is, of course, not having any idea at all what the outcome of an action might be. Presumably this kind of activity is to be avoided, if at all possible. More likely, when we undertake a given action, we will have a range or set of possible outcomes in mind, but the actual outcome will be determined by a “probabilistic” event of some kind.

Since computers are tools for solving “real world” problems and the models of many real world problems are intrinsically probabilistic in nature (i.e., they involve some element of chance or uncertainty), we naturally seek a way of incorporating this aspect of some of our model solutions into their computer implementations.

A thing that we wish to do frequently is to choose “randomly” a single individual from a group of individuals, and it is therefore useful to have a mechanism for doing this.

Populations and random samples

In probability and statistics a population is any group of individuals under study. Although the term suggests people, or at least things that are alive, the individuals in a population, when the word in used in this sense, may be either living things or inanimate objects.

A random sample of a given size taken from a population is a sample chosen in such a way that every possible sample of that size is equally likely to be the actual sample.

Random and pseudorandom numbers, and random number generators

The idea of a random number is that of a number which is determined by the outcome of a “chance experiment” of some kind. The traditional simple discrete examples are the flipping of a coin and assigning a 0 or 1 according as we get a tail or a head (or vice versa) and the tossing of a single die and assigning a number from 1 to 6, depending on how many spots there are on the upturned face.

Random numbers turn out to be useful whenever we want to represent or simulate data or events that involve an element of chance, as in writing a program to play a game, or in modeling the traffic flow at an intersection.

A sequence of random numbers (i.e., a random sequence) from a given set of numbers (i.e., a population of numbers) is a sequence such that any one of the numbers is as likely to be chosen as any other and the choices are independent, which means that each new choice does not depend in any way on previous choices. This is equivalent to saying, in somewhat more formal statistical parlance, that the numbers must be random observations from a uniform distribution.

Unfortunately, computers cannot produce “truly random” numbers or “truly random” sequences because they are ultimately deterministic devices, but it turns out that there are certain functions (called random functions or random number generators) that can produce numbers that are “sufficiently random” for most purposes. Such numbers are referred to as pseudorandom numbers. The terminology we use here is somewhat loose, in that often what are technically pseudorandom numbers are referred to as random numbers, even though they are not truly random, and in fact we shall follow this tradition and do so consistently throughout the rest of this discussion.

Methods of generating random and pseudorandom numbers

The question of whether a given procedure actually produces a “sufficiently random” sequence is an important one, but not one we shall concern ourselves with. In other words, we shall simply assume that any random sequence we have to use is “random enough”.

Here is a summary of some techniques for choosing such numbers:

1.
Use some physical process, such as:

•
flipping a coin and assigning a 1 for a head and a 0 for a tail (or vice versa)

•
throwing a die and recording the number of spots on the upturned face

•
spinning a needle and placing a scale of any length on the circumference of a circle

2.
Use a table of random numbers that someone else has compiled.

3.
Use a computer to:

•
access a previously compiled table of random numbers

•
generate its own random numbers (really pseudorandom numbers, but we said that already)

How can we get a computer to “generate” a sequence of random numbers? There are several methods, one of the most popular being the so-called mixed congruential method that we shall now describe.

A random number generator

To generate a sequence of random integers in the range 0..(m-1), we perform the following steps:

Step 0 Begin with an initial integer called the seed (which may or may not itself be randomly chosen), and set x0, the first value of the random sequence, to be equal to the value of this seed.

Step n (for n >= 1) Compute xn from the assignment

xn = (a * xn-1 + c) % m

where a, c, and m are positive integers with a < m and c < m. The seed itself may or may not be in the required range, but use of the % operator guarantees that each successive integer will be in the range 0..(m-1).

Some questions arise immediately:

•
How do we decide on the values of a, c, and m to use?

•
How do we get a value for the seed?

•
Why does this work anyway?

Unfortunately, a complete answer to any of these questions involves more detail than we want, or need, to go into for our purposes. So, let us content ourselves with some examples and a few remarks.

Example 1

Suppose we want a mechanism for choosing eight random integers from the range 0..7. Let us begin by choosing the following values for m, a, c and x0:

m = 8 a = 5 c = 7 x0 = 4 (the starting value, or "seed")

Then our random sequence is given by the last column in the following table:

	n
	xn-1
	5xn-1 + 7
	xn = (5xn-1 + 7) % 8

	1
	x0 = 4
	27
	3

	2
	x1 = 3
	22
	6

	3
	x2 = 6
	37
	5

	4
	x3 = 5
	32
	0

	5
	x4 = 0
	7
	7

	6
	x5 = 7
	42
	2

	7
	x6 = 2
	17
	1

	8
	x7 = 1
	12
	4

Note that by choosing m = 8, there are eight possible values for xn in the required range (because of how the % operator works) and, as we can see from the table, each possible value actually occurs in this particular sequence.

On the other hand, for different values of a and c this may not be the case, as the following Example shows.

Example 2

Suppose once again that we want a mechanism for choosing eight random integers from the range 0..7. This time let us choose the following values for m, a, c and x0:

m = 8 a = 4 c = 7 x0 = 3

If we try to construct a table as in Example 1 above, we get

	n
	xn-1
	4xn-1 + 7
	xn = (4xn-1 + 7) % 8

	1
	3
	19
	3

	2
	3
	19
	3

	.
	.
	.
	.

	.
	.
	.
	.

	.
	.
	.
	.

in which the same value xn is repeated for each value of n.

We make the following observations in response to the questions posed earlier:

First, though the choice of m is determined simply by the range of random integers desired, a and c must be chosen very carefully. There are, in fact, various rules for choosing a and c. For example, if

m = 2b, for some positive integer b, and

a is one of 1, 5, 9, 13, . . .

c is one of 1, 3, 5, 7, . . .

then we are guaranteed to get each integer in the range 0..(m-1) before repetition occurs. This is not at all obvious, so don’t feel bad if you thought it didn’t seem so.

Second, the choice of seed is not critical, in one sense, since it determines only what number we start with and the order in which numbers appear, but not which numbers we get. Note that, somewhat paradoxically perhaps, starting with the same seed always gives the same “random” sequence, which is actually the source of a distinct and significant advantage of pseudorandom numbers over truly random numbers—namely, repeatability. The fact that a sequence of pseudorandom numbers, though not predictable before the fact, is reproducible, is very convenient for purposes of comparison, testing, debugging, and studying more closely any interesting sequences that appear in the context of our particular application.

However, the following question also remains: How can we get a random seed as well? The reasons we want one are at least two, namely so that

•
we do not have to ask the user to supply a seed every time the program runs

•
the seed will be different each time the program runs and the user cannot predict what it will be on any given run of a program

These are features we want to provide in many of our programs—those playing games of chance, for example—and we can do it by using a value obtained from a call to an appropriate system routine or built-in function, as discussed later.

Third, the numbers generated as in Example 1 above, though not “truly random” numbers, nevertheless have the appearance of randomness in that they would pass certain statistical tests for randomness, were we to apply those tests.

Where do we get a usable random number generator?

The random number generator of Example 1 above is obviously very limited. We can see, in principle, how we might modify the method to generate random integers in the range 0..100, for example, but what values should we then choose for a and c? And what if we want random integers in the range -30..50 or random real numbers from the interval* [-6.5,17.5)?

In other words, the random numbers produced by the mixed congruential method discussed above may be inconvenient because they are integers in the range 0..(m-1). This inconvenience may be dealt with by transforming the random numbers obtained directly to any required range, as we discuss in the next section.

However, for these reasons and others, we tend not to construct our own random number generators from scratch. Instead we rely on those previously constructed by others, and there are a number of sources for such routines. For example, we may look up in a textbook the code for a random number generator written in whatever programming language we happen to be using and copy it into our source code at the appropriate place. Our programming language might even have one or more built-in functions that we can use. Or, we can make use of a system call to a system routine if our computer system has a built-in random number generator that is available to programs written in any high level language such as FORTRAN, Pascal, C or C++.

The names of such routines and the precise means of accessing them, as well as exactly what each one does, will vary from system to system, and/or from one programming language to another, so local documentation will have to be consulted.

Transformations from one range to another—continuous and discrete

Built-in random number generators are generally designed to produce random real numbers in the interval [0,1] (or perhaps [0,1)), or a non-negative integer in the range from 0 to some maximum positive value. Fortunately it is easy to transform values from one range to another, as we now show.

Note, for example, that we could have produced random real values in the range [0, 1) even with our simple random number generator in Example 1, simply by dividing each random integer generated by m, and recording the real value thus obtained. The same procedure could be used to produce random values between 0 and 1 from values between 0 and any positive integer.

On the other hand, given that a mechanism is available for generating random numbers in the interval [0,1], the programmer can make a transformation of the real numbers actually generated from [0,1] to the required range. By a transformation we simply mean a function, in the usual mathematical sense, that “maps” the interval [0,1] to the required range of numbers.

For example, each of the following shows a transformation which “maps” the interval [0,1] to another set of numbers:

y = 15x transforms [0, 1] to [0, 15]

y = 30x - 10 transforms [0, 1] to [-10, 20]

y = int(10x) transforms [0, 1] to {0, 1, . . ., 10}

y = int(99x + 1) transforms [0, 1] to {1, 2, . . ., 100}

y = int(100x + 1) transforms [0, 1) to {1, 2, . . ., 100}

In general, if a and b are integers with a < b, then

y = (b-a)x + a transforms [0, 1] to [a, b]

y = (b-a)x + a transforms [0, 1) to [a, b)

y = int((b-a)x + a) transforms [0, 1] to {a, a+1, ..., b}

y = int((b-a+1)x + a) transforms [0, 1) to {a, a+1, ..., b}

Related C++ Standard Library functions: rand, srand, clock, time
In C++ the two functions rand and srand from <cstdlib> can be used when a random number generator is needed. The rand function actually generates the random values (integers in the range 0..RAND_MAX, where RAND_MAX is a system-dependent named constant). The srand function must be called with a different “seed” value before rand is used if the values generated by rand are to be “randomized”, i.e., if the same “random” sequence is not to be generated each time by the sequence of calls to rand.

The functions time and clock, in addition to other uses such as providing the current date and time (time) or the amount of cpu time used by your program (clock), can be called upon to provide a random seed value for input to the srand function. These functions are found in <ctime>.

* 	We are using here the standard mathematical notation for intervals, namely that [a,b) denotes the set of numbers x satisfying the inequality 0 <= x < 1. We also use the notation { a, a+1, ..., b } for the set of integer points from a to b inclusive. In all such notations we assume that both a and b are integers, and that a < b.

6

