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 A B S T R A C T

Knowledge Graphs (KGs), such as DBpedia and ConceptNet, enhance Natural Language Processing (NLP) 
applications by providing structured information. However, extracting accurate data from KGs is challenging 
due to issues in entity detection, disambiguation, and relation classification, which often lead to errors and 
inefficiencies. We introduce Attention2Query (A2Q), an attention-driven approach that directly ranks and 
selects the most relevant facts, thus minimizing error propagation. A2Q centres on three key contributions: (1)
Focused Node Selection, which streamlines graph traversal; (2) Global Attention Alignment, improving retrieval 
by comparing facts against the query text; and (3) Contextual Re-ranking, enabling on-the-fly adjustments of 
fact importance based on evolving query context. Experimental results across multiple tasks and datasets show 
that A2Q substantially outperforms baseline methods, including those in zero-shot settings, achieving higher 
retrieval accuracy with reduced computational overhead.
1. Introduction

Knowledge graphs (KGs) (Bollacker et al., 2008; Lehmann et al., 
2015; Vrandečić & Krötzsch, 2014) offer a structured approach to 
amalgamate data from varied sources through a semantic framework 
conducive to inference and computational processing. These graphs 
encapsulate facts as triplets (entity, relation, entity) and can represent 
extensive global knowledge. Their design allows for the incremental 
addition of entities and relationships in various ways – manually, semi-
automatically, or automatically – without disrupting existing function-
alities. This adaptability aligns with the semi-structured data model, 
supporting regular updates to KGs. However, this schema design flexi-
bility brings challenges in KG management and querying. In the realm 
of natural language processing, language models (LMs) play a pivotal 
role (Brown et al., 2020; Devlin et al., 2019). However, these models 
may contain knowledge that is incomplete, outdated, or inaccurate. 
Recent research, Galetzka et al. (2021), Kang et al. (2022), Ma et al. 
(2022) and Oguz et al. (2022), highlights the potential of enhancing 
LMs with KG-sourced facts to improve outcomes in tasks such as 
question answering and dialogue generation.

Despite the wide-ranging applications of KGs, the current methods 
for fact retrieval from them tend to be overly complex. Current strate-
gies, Baek et al. (2023), Lan et al. (2021) and Wang et al. (2021) and 
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traditional methods (Fu et al., 2020; Lan et al., 2021), involve three 
main steps: identifying the relevant span within the text, disambiguat-
ing this span to link it to a specific entity in the KG, and then classifying 
the relationship that pertains to the query. For instance, when querying 
‘‘Who is Jason Bourne?’’, the process begins with identifying "Jason 
Bourne" as the entity, linking this to its corresponding entity ID in the 
KG, and then determining the applicable relationship, such as ‘‘Who 
is’’, among potentially dozens associated with that entity. This series 
of steps is generally referred to as entity linking. Moreover, algorithms 
to initiate searches from specific entities within a subgraph based on a 
target condition to extract relevant subgraphs have been developed (Tu 
et al., 2023). In contrast, LM models synthesize information post-
extraction from KGs or differentiate definitions in a more structured 
manner (Chen et al., 2021).

The current methods for retrieving information from KGs face sev-
eral significant challenges. Firstly, they depend on complex processes 
for exploring graphs and resolving paths, which is problematic due to 
the scarcity of high-quality graph data. This scarcity, compounded by 
the necessity for data cleaning and path resolution, results in mini-
mal usable data. Secondly, the step-by-step nature of these methods 
introduces the risk of error propagation (Singh et al., 2020). Errors 
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in early steps, like span detection, can reduce the accuracy of sub-
sequent steps, such as relation classification or path mapping, which 
may result in incorrect outcomes. Thirdly, the algorithms used to link 
query entities to KG entities or to predict relationships are often not 
adaptable to new entities and relationships, limiting their applicability 
across different KGs. A more flexible approach that avoids KG-specific 
extractions would be beneficial. Lastly, these methods are inherently 
time-consuming, requiring the initial extraction of all potential neigh-
bouring paths into a subgraph, followed by extensive pruning and 
cleaning to isolate the relevant subgraph or path. This process not only 
adds to the computational burden but also the overall complexity of 
the task.

To address these challenges, our approach introduces on-the-go 
retrieval of relevant triplets for natural language queries by calculating 
attention scores within a shared representation space of contextual and 
graph embeddings, facilitating focused exploration of each entity in 
the neighbourhood. This method draws inspiration from Transform-
ers (Vaswani et al., 2017), which introduced the attention mechanism 
as a means to selectively concentrate on the most pertinent segments of 
the query for optimizing relation estimation between tokens. Unlike the 
original application of attention in transformer models, which primarily 
enhances the interaction between encoder and decoder modules, our 
implementation leverages attention to establish a direct contextual link 
between the input query and the graph’s nodes, including their relation-
ships. This strategy not only streamlines the retrieval process but also 
dynamically adapts to the specific requirements of the query, thereby 
mitigating the limitations associated with traditional KG exploration 
methods.

To develop our fact retrieval system, we begin by tokenizing the 
input query and initially mapping all tokens against the KG and Tax-
onomies to capture preliminary information. Following the embedding 
of this information using graph embeddings and transformer embed-
dings, we employ a triple-pass attention mechanism. The first pass 
involves identifying a focused path through the graph and pinpointing 
nodes relevant to the current token. We pinpoint the most appropriate 
node at this juncture in the second pass, progressively deepening 
our search. Subsequently, we evaluate these paths in the third pass 
against any available supplementary information, such as multiple-
choice options in question-answering systems. To further refine the 
search for relevant triplets, we approximate similarity assessments 
using a relevance classifier at the end of each pass that leverages a 
specially fine-tuned model. This model evaluates the relevance between 
the input token from the query and the extracted triplet, ranking 
them according to their pertinence to the query. Importantly, because 
our system embeds triplets using a language model, it can adapt to 
various KGs without retraining to accommodate new schemas or types 
of entities and relations. This capability distinguishes our method from 
traditional retrieval systems, which often require extensive retraining. 
Our framework is named Attention2Query (A2Q), reflecting its core 
operational mechanism.

We assessed our Attention2Query (A2Q) framework on various 
fact retrieval tasks within the question-answering domain, aiming to 
efficiently retrieve relevant triplets for given queries. Our experimental 
findings show that A2Q outperforms existing baseline methods that 
rely on traditional fact retrieval pipelines from KGs. Furthermore, 
our reranking approach notably enhances retrieval performance, as 
supported by comprehensive analyses demonstrating the effectiveness 
and simplicity of the A2Q framework.

This work contributes the following advancements:

• We introduce a novel, on-the-go fact retrieval framework for KGs, 
employing an attention mechanism to refine neighbourhood and 
path selection. This approach uses representational similarities 
between the query and triplets to streamline the processes of 
entity detection, disambiguation, and relation classification into 
a single step.
2 
• We develop a reranking strategy to address the challenge of 
minimal context in on-the-go fact retrieval. This strategy in-
volves successive attention calculations to improve the accuracy 
of selection.

• We propose a versatile strategy to mitigate the issue of retrieving 
non-relevant data from KGs. This includes integrating additional 
knowledge sources, such as taxonomies, and leveraging optional 
information, like Multiple-Choice Question (MCQ) data.

• We demonstrate the superiority of our A2Q framework through 
validation on fact retrieval tasks, highlighting its advantages over 
conventional baselines in both the quality of data extracted and 
the efficiency of retrieval across unsupervised and supervised 
settings.

2. Related work

The pursuit of information retrieval focuses on sourcing documents 
or KG entries that align with user queries. Information retrieval has 
evolved significantly, starting with lexical matching methods like TF-
IDF, which often encounter vocabulary mismatches (Jeong et al., 2021; 
Nogueira et al., 2019). Recent advancements have embraced the use 
of language models for query-document processing, showcasing a shift 
toward understanding queries and documents through latent semantic 
representations (Devlin et al., 2019; Karpukhin et al., 2020; Xiong 
et al., 2020). This evolution demonstrates the growing ability of models 
to capture document meaning, though challenges persist in extracting 
succinct facts from KGs.

In the realm of knowledge representation, KGs stand out as critical 
infrastructures for storing factual data in structured formats, specif-
ically as triplets (entity-relation-entity). These triplets serve various 
domains, including KG question answering (KGQA) and improving the 
factual accuracy of language model responses (Bollacker et al., 2008; 
Chakraborty et al., 2019; Kang et al., 2022; Lukovnikov et al., 2017; 
Lv et al., 2019a; Sha et al., 2023; Vrandečić & Krötzsch, 2014; Zhang 
et al., 2019). The integration of structured and unstructured data, as 
seen in methods that combine knowledge bases with external databases 
or inferential graphs for reasoning, underscores the dynamic potentials 
of KGs in enhancing information retrieval and reasoning processes (Lin 
et al., 2019; Lv et al., 2019a; Min et al., 2019; Sap et al., 2019). 
Additionally, approaches like schema graphs utilize a knowledge-based 
symbolic domain and path-based LSTM for scoring (Lin et al., 2019). 
In contrast, others blend structured knowledge bases with unstructured 
sources for commonsense reasoning (Lv et al., 2019a).

Extracting relevant facts efficiently from KGs continues to be chal-
lenging. Traditional methods like neural semantic parsing, which trans-
lates queries into executable languages on KGs, require extensive an-
notations and deep logical structure understanding (Bakhshi et al., 
2020; Bakken & Soylu, 2023; Dong & Lapata, 2016; Liang, 2013; Luo 
et al., 2018). Sequential methods of entity identification, resolution, 
and relationship categorization often accumulate errors, leading to 
inefficient outcomes (Bordes et al., 2014; Chen et al., 2019; Han et al., 
2020; Hao et al., 2017; Singh et al., 2020; Wang et al., 2021). Recent 
approaches attempt to align textual triplets with input text for retrieval, 
yet they still rely on preliminary entity linking (Oguz et al., 2022). 
Addressing these limitations, our approach simplifies the process by 
directly harnessing representational similarities for fact retrieval, thus 
streamlining the retrieval into a single, efficient step (Ma et al., 2022). 
Our approach bypasses traditional complexities by using representa-
tional similarities for direct fact retrieval, thereby reducing the process 
to a single, streamlined step.

In this study, we introduce a novel methodology, the
Attention2Query (A2Q) method, designed to optimize fact retrieval 
from KGs by employing a machine learning approach that uses at-
tention mechanisms to identify and evaluate relevant nodes directly 
related to each token in the input text. This innovative approach not 
only simplifies the retrieval process but also significantly enhances the 
accuracy and efficiency of extracting information from KGs, making it 
highly effective for various NLP tasks.
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3. Background

In this section, we briefly introduce the foundational concepts that 
underpin our proposed methodology 4. Specifically, we highlight (1) 
transformer-based embeddings for text representation, (2) attention 
mechanisms, and (3) KG structures. By covering these foundational con-
cepts here, we establish the necessary background for understanding 
our approach. This allows the Methodology section to focus exclu-
sively on our novel contributions, such as [mention key novel aspects], 
without reiterating fundamental details.

3.1. Transformer-based embeddings

Transformer-based language models, such as BERT (Devlin et al., 
2019) or RoBERTa (Liu et al., 2019), have become standard for en-
coding textual data into dense vector representations. They leverage 
self-attention layers to capture contextual information from both left 
and right contexts. This bidirectional encoding renders them particu-
larly effective for downstream tasks like fact retrieval, where nuanced 
semantic similarities between queries and KG entries are crucial. In our 
work, these embeddings form the backbone of the Relevance Classifier, 
enabling contextual alignment between query text and KG triplets.

3.2. Attention mechanisms

Attention mechanisms (Vaswani et al., 2017) allow models to focus 
on the most relevant parts of a sequence by calculating compatibility 
scores between elements (e.g., query-key–value). Originally introduced 
for machine translation, attention has since been applied to numerous 
NLP tasks, from summarization to reasoning. In the Attention2Query 
(A2Q) framework, we extend this concept to identify and prioritize key 
nodes in the KG that align semantically with specific tokens in the user 
query. By repeatedly recalculating attention scores, we minimize the 
need for exhaustive graph traversal and help mitigate error propagation 
through selective focus. As the attention is not directly designed to 
work on KG, we have created our own variant based on a self-attention 
mechanism and designed additional modules to perform similar tasks.

3.3. Knowledge graphs and graph embeddings

A KG stores facts in the form of triplets (subject, relation, ob-
ject). Popular KGs, such as ConceptNet (Speer et al., 2018), DBpe-
dia (Lehmann et al., 2015), and Wikidata (Vrandečić & Krötzsch, 2014), 
offer large-scale structured information. Many approaches represent KG 
entities and relations through specialized graph embeddings (e.g., Num-
berbatch Speer et al., 2018 for ConceptNet), which place related nodes 
closer in a continuous vector space. We leverage these embeddings 
alongside transformer-based text embeddings to measure semantic rel-
evance between query terms and candidate triplets. Unlike traditional 
KG pipelines (which typically apply distinct modules for entity linking, 
relation classification, and disambiguation for triplet extraction), our 
proposed KG pipeline uses representational similarities and attention 
queries to unify fact retrieval in a single pass.

3.4. Taxonomies, MCQ context, and optional information

In some tasks, additional structured data (e.g., taxonomies or MCQ 
answer choices) can guide fact retrieval, especially if the query is 
under-specified. We incorporate these additional structured datasets to 
the input to improve the performance on domain-specific evaluations. 
This modular design allows new or domain-specific taxonomies to be 
plugged in without altering the underlying retrieval architecture.
3 
Algorithm 1: Overall A2Q Pipeline. A high-level procedure 
orchestrating subgraph extraction, optional path generation, and 
triplet selection.

Input:  Query 𝑄, Knowledge Graph 𝐾𝐺, Max Triplets 𝐾,
(Optional) Extra Info e.g., MCQs

Output:  Top-𝐾 Relevant Triplets 𝑇 ∗

⊳ 1) Subgraph Extraction (Algorithm 3)
1 𝐺 ← ExtractSubgraph(𝑄,𝐾𝐺)
⊳ 2) Relevance classification (model-based, not 
shown as a separate algorithm)

2 𝐺∗ ← RelevanceClassifier(𝐺∗, 𝑄) ; ⊳ Scores or filters 
triplets

⊳ 3) Final selection
3 𝑇 ∗ ← SelectTopK(𝐺∗, 𝐾)
⊳ 4) (Optional) Path Generation to merge 
disjoint regions (Algorithm 4)

4 𝐺∗ ← PathGeneration(𝐺,𝐾𝐺)
5 return 𝑇 ∗

4. Methodology

In this section, we define the problem and outline the proposed 
framework to address it. Our main goal is to extract relevant infor-
mation from KGs (Lehmann et al., 2015; Speer et al., 2018) in the 
most efficient way possible in terms of speed and computation without 
degrading quality. An overview of the proposed framework is shown in 
Fig.  1 and Algorithm 1.

The Attention2Query (A2Q) framework consists of four parts, as 
shown in Fig.  1: the neighbourhood extractor, sub-graph extractor, 
relevance classifier, and path generator.

4.1. Task formulation

Given a question 𝑞 and a set of candidate answers, such as in MCQs 
{𝑎1, 𝑎2,… , 𝑎𝑞}, our goal is to identify a subset 𝑆 ⊆ 𝑇  of triplets from a 
KG such that |𝑆| = 𝑛, where 𝑛 is a predefined number. Each triplet in 
𝑆 should maximize relevance and plausibility concerning the question. 
This can be mathematically represented as:
𝑆 = arg max

𝑆′⊆𝑇
|𝑆′ |=𝑛

∑

𝑡∈𝑆′
score(𝑡, 𝑞)

where score(𝑡, 𝑞) measures the relevance and plausibility of triplet 𝑡 in 
answering the question 𝑞.

To illustrate, consider the question ‘‘Canada is a member of ?’’ and 
the set of candidate answers:
{NATO,USA,Europe,EU}

Here, 𝑞 represents the question and {𝑎1, 𝑎2, 𝑎3, 𝑎4} are the candidate 
answers. The KG contains triplets such as:
{(Canada, isA,Country),
(Canada,PartOf,NATO),
(NATO, isA,Group)}
The goal is to select the triplets that best support the question, such as 
(Canada,PartOf,NATO).

Our proposed method takes the question 𝑞 and an external KG as 
input. The KG is represented as a collection of triplets:
𝑇 = {(𝑒𝑖, 𝑟𝑖𝑗 , 𝑒𝑗 ) ∣ 𝑒𝑖, 𝑒𝑗 ∈ 𝐸, 𝑟𝑖𝑗 ∈ 𝑅}

where 𝐸 is the set of entities and 𝑅 is the set of possible relations. 
Each triplet (𝑒𝑖, 𝑟𝑖𝑗 , 𝑒𝑗 ) consists of a pair of entities 𝑒𝑖, 𝑒𝑗 connected by a 
relation 𝑟𝑖𝑗 .

In the example above, selecting the relevant triplet (Canada,PartOf,
NATO) helps correctly identify the answer ‘‘NATO’’ as the most relevant 
option.
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Fig. 1. Overview of the Proposed Information Extraction Approach: Input 1: The Question includes a query text to identify relevant information. Input 2: MCQ Options provide 
additional context for multiple-choice questions. Triplets from KG: Search within the KG to locate and extract relevant entity neighbourhoods and triplets. Taxonomy Definitions:
Retrieve definitions for unfamiliar and medical terminology. A2Q Process: This multi-step procedure begins by identifying relevant neighbourhoods for each entity mentioned in 
the question. Next, the most relevant nodes are selected from all neighbourhoods during the sub-graph extraction phase. Triplets are then ranked according to their relevance to 
the question using a fine-trained Relevance Classifier. Finally, the Generate Paths utility reconstructs broken pathways during selection.
4.2. Relevance classifier

We have chosen BERT (Devlin et al., 2019) to perform triplet clas-
sification on the extracted triplets from KG, allowing for a simplified 
triplet selection process.

Our fine-tuned BERT language model (LM) is specifically trained on 
a dataset of 1𝐾 samples to rank triplets from a KG on a scale between 
1 and 10.

1. Input Formation: For an input question 𝑞, and a triplet 𝑡𝑛, the 
input 𝐿 for the LM is formed by:
𝐿 = [CLS]; 𝑞; [SEP]; 𝑡𝑛

where [CLS] and [SEP] are special tokens used by BERT and 
similar pre-trained models.

2. Model Processing: The concatenated input 𝐿 is processed by 
the fine-tuned BERT LM to produce a rank:
Rank = BERT_LM(𝐿)

The output, Rank, assigns a score between 1 and 10, where each 
score 𝑟 indicates the level of relevance, with 𝑟 = 1 being the least 
relevant and 𝑟 = 10 the most relevant.

3. Attention Mechanism: The ranking scores are further refined 
by an attention module:
Final Score = Attention_Module(Rank)
This mechanism computes a weighted average where weights 
are adjusted according to the relevance scores, prioritizing
triplets with higher relevance.

This method allows for a dynamic and nuanced assessment of triplet 
relevance, leveraging semantic analysis and contextual alignment en-
abled by the BERT LM.
4 
Algorithm 2: AttentionNeighborhood. Discovers relevant 
neighbours for a single query token using attention-based scor-
ing.

Input:  Token 𝑞𝑖, Knowledge Graph 𝐾𝐺
Output:  Neighbourhood 𝑁𝑖
⊳ 1) Retrieve immediate neighbours from 𝐾𝐺

1 neighbours ← KGLookup(𝑞𝑖, 𝐾𝐺)
⊳ 2) Apply attention-based scoring to each 
neighbour

2 foreach node 𝑛 ∈ neighbours do
3 score(𝑛) ← ComputeAttention(𝑞𝑖, 𝑛)
4 end 
⊳ 3) Select top relevant neighbours based on 
attention scores

5 𝑁𝑖 ← TopNodes
(

neighbours, score
)

6 return 𝑁𝑖

4.3. Neighbourhood extractor

In this section, we extract the neighbourhood of each token. We 
take a tokenized input query and process each token in KG to extract 
all the relevant information related to the query in the KG for further 
information refinement. An overview can be seen in Algorithm 2. As per 
the structure of the KGs, the idea here is that the relevant information 
lies within the same vicinity in the KG for similar information (Speer 
et al., 2018). For the KG, we utilize ConceptNet (Speer et al., 2018) and 
DBPedia (Lehmann et al., 2015) KGs.

To extract the neighbourhood for each sample, we use the following 
approach. We start by querying each token in the question into the 
KG and then generating an embedding of the token. We expand the 
neighbourhood by calculating attention between each neighbourhood 
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Fig. 2. This figure illustrates the comprehensive workflow for neighbourhood extraction associated with each entity in the question. Initially, we identify and map the neighbours 
of each entity within the graph. These neighbours are then embedded, and a novel attention query is employed to assess and score their relevance based on their proximity to 
the entity and their relation to the input question. We apply a penalty to any triplet farther from the entity under the hypothesis that the most relevant nodes are typically closer 
together. Finally, a novel relevance classifier evaluates and ranks all considered triplets, selecting the top-ranked triplets based on a predefined threshold.
token and the current token. Then, we penalize the scored triplets for 
distance from the original token, select the node with the highest score 
as a current token, and continue expanding the neighbourhood until we 
reach the specified threshold or set hyperparameter. Then, we pass all 
these tokens through the relevance classifier to perform triplet ranking 
based on semantic similarity compared to the input query and select the 
triplets that scored highest compared to the input question in context 
and relevance with the triplets. Finally, we selected triplets based on 
ranking. The process can be seen in Fig.  2.

For the edge cases where the input token is not part of the KG, we 
use semantic similarity to select relevant words to get the neighbour-
hood for the missing token.

To extract the neighbourhood for each token within the question 
from the KG, the process is outlined as follows:

1. Query and Embedding: For a given token 𝑡𝑖 from the input 
question q, search it in the knowledge graph 𝐺 and generate 
an embedding 𝐞(𝑡𝑖) for token and all its neighbours 𝑁𝑏_𝑖 =
{𝑛𝑖,1, 𝑛𝑖,2,… , 𝑛𝑖,𝑁}.

𝐞(𝑡𝑖) = Embed(𝑡𝑖)

𝐞(𝑛𝑖,𝑗 ) = Embed(𝑛𝑖,𝑗 ) ∀𝑛𝑖,𝑗 ∈ 𝑁𝑏𝑖

2. Neighbourhood Expansion: Calculate the attention scores 𝛼𝑖𝑗
between each token 𝑡𝑖 and its neighbours in 𝑁 of 𝑁𝑏𝑖 where 𝑖
represents the token and 𝑗 represents neighbour of token.
𝛼𝑖𝑗 = Attention(𝐞𝑡𝑖 , 𝐞𝑛𝑖,𝑗 ) ∀𝑛𝑖,𝑗 ∈ 𝑁𝑏𝑖

3. Scoring and Penalization: Apply a distance penalty to the 
attention scores based on the distance from 𝑡𝑖 to each neighbour 
node 𝑁𝑏𝑖 where 𝑁𝑏 is a subset of selected neighbours based on 
semantic similarity, adjusting the score 𝑠𝑁𝑏𝑖 .

𝑠𝑁𝑏𝑖 = 𝛼𝑖𝑗 − 𝜆 ⋅ Dist(𝑡𝑖, 𝑁𝑏𝑖)

where 𝜆 is a scaling factor that modulates the extent of the 
distance penalty applied to the attention score. A higher value 
of 𝜆 increases the penalty for greater distances, thus diminishing 
the score more substantially for nodes further away from 𝑡𝑖. 
Conversely, a smaller 𝜆 value reduces the impact of distance 
on penalizing the score, enabling distant nodes to maintain 
higher scores. The choice of 𝜆 is a hyperparameter based on the 
desired balance between proximity influence and other factors 
influencing node interaction.

4. Selection and Expansion: Select the token 𝑡∗ with the highest 
adjusted score and expand the neighbourhood. Repeat until a 
threshold or a set hyperparameter 𝛩 is reached.
𝑡∗ = argmax(𝑠𝑡 ), until 𝛩 is met
𝑡𝑖∈𝑁 𝑖

5 
Algorithm 3: ExtractSubgraph. Aggregates token-level neigh-
bourhoods into a single subgraph.

Input:  Query 𝑄, Knowledge Graph 𝐾𝐺
Output:  Combined Subgraph 𝐺
⊳ Initialize an empty collection of nodes/edges

1 𝐺 ← ∅
2 foreach token 𝑞𝑖 ∈ 𝑄 do

⊳ Extract local neighbourhood for each token 
(Algorithm 2)

3 𝑁𝑖 ← AttentionNeighborhood(𝑞𝑖, 𝐾𝐺)
⊳ Merge into combined subgraph

4 𝐺 ← 𝐺 ∪𝑁𝑖
5 end 
6 return 𝐺

5. Relevance Classification and Ranking: Pass all tokens through 
a relevance classifier to rank the triplets based on their contex-
tual relevance and similarity to 𝑞, selecting the top 𝑛 triplets.
{𝑇1, 𝑇2,… , 𝑇𝑛} = Top-Rank-Relevance(𝑞, {𝑠𝑡𝑖})

6. Missing Nodes: There exists an edge case where the current 
approach will return an empty response. This occurs when the 
searched token is missing from the KG itself. To handle this case, 
we employ semantic similarity using cosine similarity in the 
embedding space of KG using its graph embeddings (e.g., Num-
berbatch Speer et al., 2018 in the case of ConceptNet) to extract 
all the nodes that have the highest relevance to the currently 
searched node and extract those neighbourhoods. This process 
will provide us with enough data to work with to generate a 
relevant response.

4.4. Graph extractor

In this section, we extract the combined neighbourhood sub-graph 
from KGs based on all the neighbourhoods we have extracted for 
each token. Here, we combine all the extracted neighbourhoods for 
all tokens to extract a collective fully connected sub-graph from KG, 
which contains all the most relevant information possible about the 
input query from the KGs. An overview can be seen in Algorithm 3.

To extract the sub-graph for the input query, we follow the follow-
ing approach. We start by embedding the input query question. Then, 
we feed the question into multi-head attention to generate the corre-
sponding value matrix. We take this value matrix along with embedded 
neighbourhoods generated by the neighbourhood Extractor, explained 
in Section 4.3, feed them to another multi-head attention block, and 
calculate the attention scores. Based on calculated attention scores, 



A. Chaudhary et al. Expert Systems With Applications 282 (2025) 127612 
Fig. 3. This figure depicts the comprehensive workflow for graph extraction. The process begins by refining the neighbourhoods to select the most relevant triplets. It extracts 
a combined sub-graph by combining all the neighbourhoods of all the tokens in the question. First, it combines all the neighbourhoods and then performs pruning to select the 
most optimal sub-graph based on the attention query.
we select a symmetrically similar neighbourhood. Then, we process 
this interim neighbourhood and pass it to the Relevance Classifier, 
described in Section 4.2. Finally, we select the highest-rated triples 
outputted from the Relevance Classifier as our final sub-graph. The 
process is shown in Fig.  3.

To extract the sub-graph for input questions from the KG, the 
process is outlined as follows:

1. Query and Embedding: For a given original question 𝑞 from the 
input, and for all extracted neighbourhood triplets 𝑇1, 𝑇2,… , 𝑇𝑛
for each token from question from the neighbourhood Extrac-
tor 4.3, compute their embeddings:
𝐞(𝑞) = Embed(𝑞)

𝐞(𝑇𝑖) = Embed(𝑇𝑖), 𝑖 = 1, 2,… , 𝑛

2. Sub-Graph Provisioning: Aggregate the neighbourhoods of
each token into a single graph, merging all connected compo-
nents:

𝐺 =
𝑛
⋃

𝑖=1
Neighbourhood(𝑇𝑖)

3. Attention Scoring: Calculate the attention scores for each node 
in the sub-graph 𝐺 against the query question 𝑞, based on 
relevance and semantic similarity:
𝛼𝑣 = Attention(𝐞(𝑞), 𝐞(𝑣)), for each 𝑣 ∈ 𝐺

4. Node Selection: Select the top 𝑛 nodes with the highest atten-
tion scores from the collective sub-graph, where 𝑛 is a hyperpa-
rameter:

𝑉 ∗ = { 𝑣 ∣ 𝑣 is among the top 𝑛 scoring nodes in 𝐺 }

5. Relevance Classifier: Rank the triplets based on their contex-
tual relevance and similarity to the input question 𝑞, using a 
relevance classifier, and select the top 𝑛 triplets:
{𝑇 ∗

1 , 𝑇
∗
2 ,… , 𝑇 ∗

𝑛 } = Top-Rank-Relevance(𝑞, {𝑇𝑖})

4.5. MCQ graph extractor

We use the following approach to extract the MCQ sub-graph for 
the MCQ options. The process begins by embedding the input MCQ 
options. These are then processed through the neighbourhood Extractor 
to retrieve neighbourhood triplets for each option. Following this, all 
neighbourhoods are passed through a multi-head attention mechanism 
6 
to produce a value matrix. This matrix is further processed with another 
multi-head attention, incorporating relevant triplets from the Graph 
Extractor as indicated in Graph Extractor 4.4, to compute the final 
attention scores. The attention is calculated on a sub-graph consisting of 
triplets from Graph Extractor 4.4 and the new triplets we received from 
the neighbourhood Extractor 4.3 for each MCQ option. Then, we select 
top-scoring triplets as our current sub-graph (neighbourhood) and pass 
them to the Relevance Classifier 4.2. Finally, we select the highest-rated 
triplets outputted from the Relevance Classifier as our final sub-graph 
in the form of a set of triplets. The process can be seen in Fig.  4.

To extract the MCQ sub-graph for MCQ options for the KG, the 
process is outlined as follows:

1. Embedding MCQ Options: Embed each MCQ option to obtain 
initial semantic representations:
𝐞(MCQ𝑖) = Embed(MCQ𝑖), 𝑖 = 1, 2,… , 𝑛

2. neighbourhood Extraction: For each embedded MCQ option, 
retrieve the associated neighbourhood triplets using the neigh-
bourhood Extractor, see Section 4.3:
𝑁MCQ𝑖

= neighbourhood Extractor(𝐞(MCQ𝑖))

3. Combining neighbourhoods: Aggregate the neighbourhoods of 
all MCQ options into a single set to form a composite neighbour-
hood:

𝐺MCQ =
𝑛
⋃

𝑖=1
𝑁MCQ𝑖

4. Calculating Attention Scores: Calculating attention scores for 
the combined sub-graph:
𝛼𝑣 = Attention(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐺MCQ),Graph Extractor)

5. Selecting Top-Scoring Triplets: Select the top 𝑛 nodes with the 
highest attention scores from the collective sub-graph, where 𝑛
is a hyperparameter:
𝑉 ∗ = { 𝑣 ∣ 𝑣 is among the top 𝑛 scoring nodes in 𝐺 }

6. Relevance Classification: Rank the triplets based on their con-
textual relevance and similarity to the input question 𝑞, using a 
relevance classifier, and select the top 𝑛 triplets:
{𝑇 ∗

1 , 𝑇
∗
2 ,… , 𝑇 ∗

𝑛 } = Top-Rank-Relevance(𝑞, 𝑉 ∗)

{𝑅∗} = {𝑇 ∗
1 , 𝑇

∗
2 ,… , 𝑇 ∗

𝑛 }

The final set 𝑅∗ represents the selected sub-graph of triplets tailored 
for the MCQ context, which is visualized in Fig.  4.
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Fig. 4. This figure depicts the additional workflow performed for MCQ options if the question is of MCQ type. The process begins with the refined sub-graph extracted in Fig.  2. 
It first generates neighbourhoods for all MCQ options and then combines all those new neighbourhoods into subgraphs from Fig.  2. Then, it performs pruning to select the most 
optimal sub-graph based on the attention query.
 

Algorithm 4: PathGeneration. Merges disjoint components 
within the subgraph by bridging partial paths.

Input:  Subgraph 𝐺, Knowledge Graph 𝐾𝐺
Output:  Updated Subgraph 𝐺∗

⊳ 1) Identify disconnected regions or partial 
paths

1  ← FindDisconnected(𝐺)
⊳ 2) Attempt to bridge each disconnected 
component

2 foreach component 𝐶𝑗 ∈  do
3 𝐶 ′

𝑗 ← BridgePaths(𝐶𝑗 , 𝐾𝐺) 𝐺 ← 𝐺 ∪ 𝐶 ′
𝑗

4 end 
⊳ 3) optionally prune low-scoring or extraneous 
links

5 𝐺∗ ← PruneSubgraph(𝐺)
6 return 𝐺∗

4.6. Path generation

In this section, we try to merge the extracted subgraphs by creating 
paths between the subgraphs during the attention query process. This 
additional step is crucial because the attention query chooses only one 
neighbour at each node to determine the path, which is further refined 
to optimize the route selection. Due to node selection, some paths 
get misaligned in the query refinement process inside Graph Extractor 
Section 4.4 and MCQ Graph Extractor Section 4.5. This misalignment 
causes the breaking of a subgraph into multiple subgraphs due to the 
deletion of a junction node. In the path generation process, we try to 
reintroduce that junction node to merge those broken subgraphs during 
the selection process.

To repair these interrupted pathways, the attention query is ex-
ecuted one last time using the neighbourhood Extractor Section 4.3 
module. It processes the final set of triplets extracted either from the 
Graph Extractor Section 4.4 or the MCQ Graph Extractor Section 4.5, 
depending on whether the input question includes MCQs. The proce-
dure involves expanding each node within the current subgraph. This 
expansion continues until it either connects with another node in the 
subgraph, establishing a clear path or reaches a set limit if a path 
cannot be formed in that direction. This expansion is repeated for every 
node in the subgraph. Subsequently, all potential paths are examined to 
identify the shortest possible path among the newly discovered paths. 
This entire process is illustrated in Fig.  5 and Algorithm 4.

To complete the disjoint paths in the sub-graph, the process is 
outlined as follows:
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1. Re-Executing Attention Query: Run the neighbourhood Ex-
tractor to expand the nodes in the vicinity of the current node 
on the extracted triplets to amend paths that were previously 
incomplete or misaligned:

𝑃 = neighbourhoodExtractor(𝐸)

where 𝐸 represents the set of triplets from the respective extrac-
tor.

2. Path Expansion: For each node 𝑣 in the current sub-graph 𝐺, 
expand the search to connect disjoint paths or extend existing 
ones until another node within 𝐺 is encountered or a predefined 
threshold is reached:

Expand(𝑣,𝐺) =

⎧

⎪

⎨

⎪

⎩

𝑣 → 𝑤 if 𝑤 ∈ 𝐺
and the path is valid,

threshold reached otherwise.

This function continues until all feasible paths are evaluated.
3. Path Traversal and Shortest Path Selection: Traverse all newly
discovered or amended paths to identify the shortest possible 
paths among them:

𝑆 = min
paths 𝑝∈𝑃{ length(𝑝) }

This step involves calculating the length of each path and select-
ing the minimum.

4. Path Finalization: Finalize the set of shortest paths for inclusion 
in the refined sub-graph:

𝐺∗ = { 𝑝 ∣ 𝑝 is among the shortest in 𝑆 }

This refined approach ensures that the paths in the extracted sub-
graph are complete and form an optimal neighbourhood in regards to 
graph and semantic similarity, facilitating more accurate and reliable 
knowledge retrieval. The entire process can be visualized in Fig.  5.

5. Experiments

This section outlines our study’s datasets, evaluation metrics, and 
baselines. The evaluation focuses on assessing the quality of triplets 
(facts) retrieved directly from KGs. Our approach bypasses traditional 
preprocessing steps such as entity span detection, entity disambigua-
tion, and relation classification. We evaluate how our method performs 
compared to contemporary and earlier methods of fact retrieval from 
KGs.
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Fig. 5. This figure demonstrates the operation of the path generation utility. The objective is to construct paths between nodes to establish a connected graph. The process begins 
by extending the current nodes through a novel attention query, selecting only one neighbour at a time until overlapping nodes are identified. Finally, the shortest path is selected 
among all paths explored by the attention query.
5.1. Datasets

We evaluate the performance of our approach on fact retrieval tasks 
whose goal is to retrieve relevant triplets over KGs given a query 
and answer questions given a query. We used several datasets for the 
question-answering task.

In question-answering tasks, we aim to predict the factual triplets, 
which we consider direct answers. (See Table  1.)

• SimpleQuestions1 (Bordes et al., 2015) is a question answering 
dataset which is designed with Freebase KG (Bollacker et al., 
2008).

• Commonsense_QA2 (Talmor et al., 2019) is an MCQ question-
answering dataset that requires different types of commonsense 
knowledge to predict the correct answers. It is designed with 
ConceptNet KG (Speer et al., 2018).

• OpenBook_QA3 (Mihaylov et al., 2018) contains questions that 
require multi-step reasoning, the use of additional common and 
common sense knowledge, and rich text comprehension. Open-
BookQA is a new kind of question-answering dataset modelled 
after open-book exams for assessing human understanding of a 
subject.

• PubMed_QA4 (Jin et al., 2019) is a medical dataset where research 
questions are answered with yes/no/maybe (e.g., Do preopera-
tive statins reduce atrial fibrillation after coronary artery bypass 
grafting?) using the corresponding abstracts.

• Head_QA5 (Vilares & Gómez-Rodríguez, 2019) is a multi-choice 
healthcare dataset. The questions come from exams to access a 
specialized position in the Spanish healthcare system and are 
challenging even for highly specialized humans. The dataset con-
tains questions about the following topics: Medicine, Nursing, 
Psychology, Chemistry, Pharmacology and Biology.

• Mintaka6 (Sen et al., 2022) is a question answering dataset de-
signed with the wikidata KG (Vrandečić & Krötzsch, 2014).

1 https://huggingface.co/datasets/fbougares/simple_questions_v2
2 https://huggingface.co/datasets/tau/commonsense_qa
3 https://huggingface.co/datasets/allenai/openbookqa
4 https://huggingface.co/datasets/qiaojin/PubMedQA
5 https://huggingface.co/datasets/dvilares/head_qa
6 https://huggingface.co/datasets/AmazonScience/mintaka
8 
Table 1
Statistics of the selected Datasets. The table provides an overview of the datasets used 
in the study.
 Dataset Type Samples  
 SimpleQuestions Triplet 21,687 
 Commonsense_QA MCQ 12,102 
 OpenBook_QA MCQ 35,928 
 PubMed_QA True/False 2,39,668 
 Head_QA MCQ 97,432 
 Mintaka Direct Answer 36000 

5.2. Evaluation

1. BERTScore: We utilize BERTScore7 (Zhang et al., 2020), a met-
ric that calculates the similarity between predicted and ground-
truth sequences using contextual embeddings. BERTScore has 
demonstrated a strong correlation with human evaluations, as 
verified by the original BERTScore paper (Zhang et al., 2020).
To calculate the BERTScore for a given query question 𝑞 and the 
corresponding extracted triples from KGs (𝑡1,… , 𝑡𝑛), where 𝑡 is 
the element index of word in the query, the following formula 
is applied: 
score_topic𝑡 = max

[1,…,𝑛]
BERTScore(𝑞𝑡, 𝑡𝑡𝑖) (1)

The overall evaluation score for the model is computed as the 
average BERTScore across all triplets: 

score_model = 1
𝑇

𝑇
∑

𝑡=1
score_triplet𝑡 (2)

2. Coverage: Coverage is defined as the ratio of tokens from the 
input query that appeared in the retrieved triplets (facts) from 
KG. 
Coverage = |𝑄 ∩ 𝑇 |

|𝑄|

(3)

where:
Q = set of tokens in the input query.
𝑇  = set of tokens from retrieved triplets in the KG.

7 Results are computed using the official implementation: https://github.
com/Tiiiger/bert_score

https://huggingface.co/datasets/fbougares/simple_questions_v2
https://huggingface.co/datasets/tau/commonsense_qa
https://huggingface.co/datasets/allenai/openbookqa
https://huggingface.co/datasets/qiaojin/PubMedQA
https://huggingface.co/datasets/dvilares/head_qa
https://huggingface.co/datasets/AmazonScience/mintaka
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
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3. Hits@K: Measures, whether retrieved Top-K triplets, include a 
correct answer or not.

5.3. Baselines

1. Linked Entity Retrieval: It predicts relationships among can-
didate triplets connected to identified entities using different 
entity linking methods. These include spaCy (Honnibal et al., 
2020), GENRE (Cao et al., 2021), BLINK (Wu et al., 2020), 
and ReFinED (Ayoola et al., 2022) for Wikidata, as well as
GrailQA (Gu et al., 2021) for Freebase.

2. Factoid QA: It retrieves entities based on their similarities with 
input query (Lukovnikov et al., 2017).

3. DiFaR: Direct knowledge retrieval directly retrieves the nearest 
triplets to the input text on the latent space (Baek et al., 2023).

4. Roberta-large: Is a common language model baseline for multi-
chose question answering tasks (Liu et al., 2019).

5. Howard (Howard et al., 2022): This method aimed to extract a 
domain-focused subgraph from KG.

6. Shangwen (Lv et al., 2019b): This method aimed to select and 
extract a relevant neighbourhood from the KG.

7. Sha (Sha et al., 2023): This method aimed to reason using a 
density matrix along the knowledge path, extract sub-graphs, 
and fuse graph entities with a bidirectional attention strategy.

8. Our Methods: Our A2Q directly retrieves all the relevant triplets 
to the input text from the KG based on semantic and contextual 
similarity. A2Q-vanilla does not include a fine-tuned relevance 
classifier and tries to use the base model as it is.

5.4. Implementation details

We use our novel Attention Query method for fact retrieval from 
KG and a lightweight MiniLM8 as a relevance classifier. The relevance 
classifier is pre-trained on the MS MARCO dataset (Dong & Lapata, 
2016). We then further tuned a manually curated reranking triplet 
dataset based on MS MARCO datasets (Bajaj et al., 2018) with concepts 
from ConceptNet KG. The relevance classifier model is fine-tuned by 
Pytorch. The batch size was set to 16, and the maximum input sequence 
defaulted to the original. The learning rate of the model is set to 10−5. 
The model was trained on a single GPU (V100) with 8 GB VRAM and 
lots of optimizations like gradient accumulation, etc, to optimally fit in 
smaller VRAM.

5.4.1. Hyperparameter discussion and sensitivity
In our approach, two key hyperparameters govern the fact retrieval 

process: (1) the threshold for neighbourhood expansion (𝛩), which 
controls how many layers of neighbours are explored around each 
token, and (2) the scaling factor 𝜆, which penalizes more distant nodes 
during expansion. Below, we discuss these hyperparameters and how 
they influence performance:

• Threshold 𝛩 for Neighbourhood Expansion: This value deter-
mines how far we explore the graph around each query token. A 
small 𝛩 (e.g., 2) restricts the search to immediate neighbours and 
speeds up retrieval but risks missing relevant nodes farther away. 
A large 𝛩 (e.g., 5 or more) can improve coverage but increases 
computational cost and may introduce noisy or redundant nodes. 
In our experiments, we found that 𝛩 = 3 struck a balance between 
coverage and efficiency on most datasets.

8 https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
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Table 2
Evaluation on SimpleQuestions and Mintaka datasets based on Hits@N. This table 
presents the performance of various methods on the SimpleQuestions and Mintaka 
datasets, measured by Hits@1 and Hits@10 metrics. The methods are compared to 
highlight the effectiveness of the proposed A2Q model, which achieves the highest 
Hits@1 and Hits@10 scores on both datasets. Hit@K measures whether the retrieved 
Top-K triplets include a correct answer or not.
 Method SimpleQuestions Mintaka

 Hits@1 Hits@10 Hits@1 Hits@10 
 Retrieval with Gold Entities 0.59 0.94 0.09 0.29  
 Retrieval with spaCy 0.29 0.44 0.05 0.16  
 Retrieval with GENRE 0.13 0.22 0.06 0.15  
 Retrieval with BLINK 0.42 0.67 0.08 0.24  
 Retrieval with ReFinED 0.41 0.62 0.08 0.23  
 Factoid QA by Retrieval 0.69 0.93 0.08 0.23  
 DiFaR 0.76 0.94 0.13 0.36  
 Howard 0.53 0.71 0.05 0.17  
 Shangwen 0.64 0.67 0.04 0.15  
 A2Q-vanilla 0.71 0.86 0.15 0.32  
 A2Q 0.78 0.94 0.15 0.37  

• Scaling Factor 𝜆 in Distance Penalty: We apply a distance-based 
penalty to attenuate the scores of nodes located several hops 
away from the starting token. A higher 𝜆 heavily penalizes distant 
nodes, reducing noise but sometimes discarding potentially useful 
contexts. A lower 𝜆 keeps more long-range nodes in play but can 
introduce spurious connections. Empirically, we observed that 𝜆
values in the range of 0.1–0.3 typically yielded a good trade-off 
across diverse queries in our evaluation.

6. Results and discussion

In this section, we evaluate the performance of our approach against 
baseline models across six datasets. We analyse the components and 
features of our model and compare them to the baselines. The results 
are detailed in Tables  2, 3, and 4.

Our A2Q framework demonstrates superior performance against 
all baselines, except when compared to incomparable models such as 
Retrieval with Gold Entities, which utilize labelled entities.

6.1. Main results

First, we conducted experiments on question-answering datasets, 
and the results are presented in Table  2. Our A2Q framework sig-
nificantly outperforms all baselines on both datasets, SimpleQuestions 
and Mintaka, in unsupervised experimental settings with substantial 
margins. 

We further experimented with MCQ-based datasets, and the results 
are shown in Table  3. As displayed, our A2Q framework significantly 
outperforms all baselines with substantial margins, similar to the results 
on question-answering datasets, demonstrating that our framework is 
highly effective in fact retrieval tasks.

Further, we tested our approach with the True/False dataset
Head_QA shown in Fig.  9, which does not have direct answers to re-
trieve but instead relies on verifying the correctness of the information, 
akin to fact verification. Our A2Q framework outperforms all baselines, 
similar to the results on question-answering and MCQ datasets, as 
shown in Table  4.

To evaluate the performance gains from our fine-tuned relevance 
classifier in improving the triplet ranking strategy, we compared the 
performances of two model variants: A2Q and A2Q-Vanilla. The en-
hanced relevance classifier brings significant performance improve-
ments, particularly when relevant data is sparse or missing, as shown 
in Tables  2 and 3.

Finally, the error bar analysis (Fig.  9) provides insight into the vari-
ability of the method’s performances, with smaller error bars indicating 

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
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Table 3
Evaluation on MCQ-based CommonsenseQA and OpenbookQA datasets. This table presents the performance of various methods 
on the CommonsenseQA and OpenbookQA datasets, evaluated across Hits@1, Hits@10, BERTScore, and Coverage metrics. 
The A2Q model demonstrates superior performance, achieving the highest scores in most metrics for both datasets.
 Method CommonsenseQA OpenbookQA

 Hits@1 Hits@10 BERTScore Coverage Hits@1 Hits@10 BERTScore Coverage 
 Retrieval with spaCy 0.33 0.47 0.35 0.41 0.35 0.44 0.32 0.44  
 Retrieval with BLINK 0.45 0.69 0.37 0.42 0.44 0.67 0.36 0.46  
 Roberta-Large 0.67 0.91 0.41 0.47 0.65 0.76 0.41 0.48  
 Sha 0.72 0.91 0.44 0.52 0.71 0.89 0.47 0.51  
 Factoid QA by Retrieval 0.72 0.94 0.41 0.44 0.74 0.92 0.43 0.47  
 Howard 0.55 0.71 0.36 0.39 0.57 0.67 0.37 0.41  
 Shangwen 0.65 0.68 0.39 0.46 0.67 0.65 0.41 0.47  
 A2Q-vanilla 0.74 0.88 0.45 0.47 0.75 0.84 0.44 0.49  
 A2Q 0.79 0.95 0.49 0.59 0.81 0.92 0.48 0.58  
Table 4
Evaluation on PubMed_QA and Head_QA medical datasets. This table compares the performance of various 
methods on the PubMed_QA and Head_QA datasets, measured by Hits@1, Hits@10, BERTScore, and Coverage 
metrics. The A2Q model outperforms other methods, particularly in Hits@1 and Coverage, demonstrating 
its effectiveness in these medical and academic QA contexts.
 Method PubMed_QA Head_QA

 Hits@1 Hits@10 Coverage Hits@1 Hits@10 BERTScore Coverage 
 Retrieval with spaCy 0.29 0.44 0.39 0.26 0.41 0.35 0.32  
 Roberta-Large 0.39 0.61 0.34 0.41 0.62 0.36 0.34  
 Factoid QA by Retrieval 0.65 0.69 0.37 0.61 0.71 0.39 0.35  
 Howard 0.51 0.68 0.35 0.49 0.67 0.31 0.34  
 Shangwen 0.61 0.65 0.42 0.59 0.61 0.35 0.32  
 A2Q-vanilla 0.66 0.65 0.44 0.65 0.66 0.41 0.36  
 A2Q 0.72 0.67 0.45 0.69 0.71 0.42 0.42  
Table 5
Sample queries and corresponding extracted information by the model. This table presents examples of queries, the relevant triplets 
retrieved by the model, and the original answer. The examples illustrate the model’s ability to retrieve pertinent facts which consists 
of accurate responses.
 Question: Who was the president of the USA in 1963?  
 Triplets Retrieved: (Robert F. Kennedy, relatedTo USA), (Robert F. Kennedy, president, USA), (president, relatedTo, Kennedy) 
 Answer: Kennedy  
 Question: Who commanded Germany during WW2 and founded the National Socialist Party?  
 Triplets Retrieved: (Hitler, relatedTo, WW2), (National Socialist Party, founder, Adolf Hitler), (Hitler, commander, Germany)  
 Answer: Hitler  
 Question: What happens when mercury is placed in water?  
 Triplets Retrieved: (Mercury, isA, heavy metal), (Mercury, sinks, water)  
 Answer: it sinks  
higher consistency, again showcasing the A2Q model’s stability and 
effectiveness.

We have also done an extended comprehensive evaluation of the 
model’s performance across multiple dimensions, as detailed in Ap-
pendix. Our evaluation indicates that the A2Q model has higher consis-
tency, reliability, and performance based on our evaluation. Altogether 
our analysis shows A2Q’s superiority and better performance on differ-
ent evaluations across various datasets while performing in a zero-shot 
setting.

6.2. Analysis on medical datasets

To evaluate whether our A2Q framework can handle challenging 
retrieval tasks on medical datasets, which are not fully covered by 
general-purpose KGs such as ConceptNet, DBPedia, or WikiData, we 
tested two types of medical datasets: PubMed_QA (True/False ques-
tions) and Head_QA (MCQ type questions).

Our A2Q framework significantly outperforms all baselines, as 
shown in Table  4. Although the results are not as precise in terms 
10 
of BERTScore accuracy, our model surpasses the baselines even with 
significantly constrained information. Our relevance classifier strat-
egy also brings substantial performance improvements, especially on 
medical datasets.

6.3. Retrieved samples

Our A2Q model demonstrates strong performance when examining 
samples from the extracted results, as shown in Table  5. Despite not 
being explicitly trained to predict entities mentioned in the input query, 
the model retrieves information highly relevant to the query in terms of 
both contextual and semantic similarities. This capability likely arises 
from the framework’s ability to differentiate between relevant and 
irrelevant parts of the graph.

6.4. Impact of the relevance classifier

To assess the impact of our fine-tuned relevance classifier, we 
compared the performance of the A2Q model with the classifier against 
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Fig. 6. Performance and efficiency of A2Q with varying top-K retrieved facts. The 
plots illustrate how the accuracy (Hits@1) changes as the number of retrieved triplets 
increases. The results are shown for the SimpleQuestions, Mintaka, Commonsense, and 
Openbook datasets. The results are based on 10 random runs for a randomly selected 
subset of 1000 samples.

Table 6
Performance comparison of different relevance classifiers. This table evaluates various 
models based on Hits@1 and Hits@10 metrics, highlighting the effectiveness of the 
MS-MARCO-MiniLM-Tuned model, which achieves the highest scores in both metrics.
 Model Hits@1 Hits@10 
 MiniLM 0.59 0.79  
 MS-MARCO-TinyBERT 0.64 0.81  
 MS-MARCO-MiniLM 0.65 0.83  
 MS-MARCO-MiniLM-Tuned 0.67 0.84  

a baseline A2Q model without the classifier, which we refer to as 
‘‘A2Q-vanilla.’’ The A2Q-vanilla model does not include the fine-tuning 
process and serves as a benchmark for comparison. The results of this 
comparison are presented in Tables  2, 3, and 4.

In most cases, the inclusion of the fine-tuned relevance classifier 
led to significant performance improvements, allowing our model to 
outperform all baselines by substantial margins.

The pre-trained MS MARCO model using MiniLM demonstrated the 
best performance when employed as a relevance classifier, as detailed 
in Table  6. Further fine-tuning of this model resulted in substantial 
additional gains, leading us to adopt it as the primary base for our 
relevance classifier.

6.5. Ablation study

6.5.1. Analysing results with varying number of triplets K
The performance of our approach completely depends on the num-

ber of triplets it has extracted. Therefore, to further evaluate it, we 
have varied the value of K, which represents the number of outputted 
triplets, and reported performance in Figs.  6 and 7. The performance 
rapidly increases until ten triplets (k=10 for how many triplets the 
method should return as output) and then saturates afterwards, as 
shown in Figs.  6 and 7. Also, the time for extracting the triplets lin-
early increases till twenty and then explodes further near exponential. 
Although the time taken between the value of k from two to ten is 
relatively less, it increases suddenly when the graph expands due to 
an increase in the number of neighbours and then the corresponding 
increase in the number of sub-queries to evaluate each relation.

We have also completed a statistical analysis to check the consis-
tency of our approach with other baselines, as shown in Fig.  8. In 
the plot, we have shown the analysis of ten different runs for each 
method with different random initializations on a random sample of 
one thousand samples from the CommonSense QA dataset. We can see 
in Fig.  8 that A2Q is performing comparative, if not better, than most 
baselines.
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Fig. 7. Performance and efficiency of A2Q with varying top-K retrieved facts. The 
plots illustrate how the time taken (in milliseconds) changes as the number of 
retrieved triplets increases. The results are shown for the SimpleQuestions, Mintaka, 
Commonsense, and Openbook datasets. The results are based on 10 random runs for a 
randomly selected subset of 1000 samples.

Table 7
Ablation study on the Commonsense_QA dataset evaluating the impact of different 
A2Q components. The table presents the BERTScore and Coverage metrics for various 
configurations of the A2Q model, demonstrating the contribution of each component 
to the overall performance. The full A2Q model achieves the highest scores, indicating 
the effectiveness of the complete architecture.
 Component BERTScore Coverage 
 A2Q 0.49 0.59  
 A2Q-vanilla 0.45 0.47  
 A2Q-No-Taxonomy 0.42 0.45  
 A2Q-No-Classifier 0.39 0.44  
 A2Q-GraphEmbed 0.32 0.38  
 A2Q-Word2Vec 0.29 0.32  
 A2Q-Glove 0.28 0.29  
 A2Q-No-Path-Gen 0.41 0.45  
 A2Q-No-MCQ-Sub 0.34 0.35  

6.5.2. Impact of components
This section discusses the impact of various components of the A2Q 

model based on an ablation study conducted on the CommonsenseQA 
dataset, as presented in Table  7.

First, we evaluated the model without the fine-tuned relevance clas-
sifier, referred to as ‘‘A2Q-vanilla.’’ This modification led to a nearly ten 
percent decrease in both BERTScore and Coverage metrics, highlighting 
the critical role of selecting the top K triplets for high relevance.

Next, we tested the model without the taxonomy component, la-
belled ‘‘A2Q-No-Taxonomy.’’ Although this also caused a performance 
drop, the impact was less severe. This is likely due to the robust cov-
erage of the ConceptNet KG within this dataset, making the taxonomy 
less essential compared to other datasets with lower coverage.

We then examined the effect of removing the relevance classifier 
altogether, resulting in the ‘‘A2Q-No-Classifier’’ model. This change 
caused a significant performance decline, reinforcing the importance 
of triplet ranking, similar to the impact observed in the ‘‘A2Q-vanilla’’ 
model.

Additionally, we tested different embedding types, including
Word2Vec (‘‘A2Q-Word2Vec’’), GloVe (‘‘A2Q-Glove’’), and ConceptNet 
Numberbatch embeddings (‘‘A2Q-GraphEmbed’’). After these evalua-
tions, we opted for a combination of graph and transformer embed-
dings, as detailed in the methodology section.

Finally, we assessed the importance of path generation (‘‘A2Q-No-
Path-Gen’’). Although its impact was less pronounced compared to 
the relevance classifier, removing path generation led to a noticeable 
performance drop. This component aids in recovering information lost 
during triplet ranking and path disruption. We also evaluated the sig-
nificance of MCQ sub-graph extraction (‘‘A2Q-No-MCQ-Sub’’), finding 
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Fig. 8. Statistical analysis of A2Q compared to other baseline methods. This figure shows box plots for Hits@1, Hits@10, BERTScore, and Coverage metrics across various 
methods. The analysis was conducted using random samples of 1000 inputs from the CommonSense QA dataset, with each method evaluated 10 times with varying initializations 
and hyperparameters.
that its removal caused a substantial performance decline, particularly 
in MCQ datasets like CommonsenseQA, where the MCQ graph provides 
essential triplets for accurate answers.

6.5.3. Correlation and robustness
Informal sensitivity checks across different datasets (e.g., Simple-

Questions vs. Commonsense QA) showed that while optimal 𝛩 and 𝜆
values differed slightly, our chosen defaults performed reasonably well 
overall. For instance, doubling 𝛩 or 𝜆 had only a moderate effect on 
retrieval scores, indicating that the model is not critically sensitive to 
small hyperparameter shifts (Sections Section 5.4.1).

6.5.4. Error propagation from neighbourhood extraction
Although our approach organizes fact retrieval into sequential

steps – neighbourhood extraction, triplet ranking, and re-ranking – 
some inaccuracies inevitably arise if neighbourhood extraction omits 
relevant nodes or includes tangential ones. Based on our existing 
evaluation data (Section 6), we note instances where the extracted 
subgraph was either incomplete or slightly noisy. Yet, overall perfor-
mance metrics (e.g., Hits@1, Coverage) remained near their averages, 
indicating that subsequent modules can compensate for modest errors 
upstream. Three main factors contribute to this resilience:

1. Global Attention Alignment (Section 4): This directly com-
pares each candidate triplet with the query, down-weighting or 
excluding facts that are only loosely connected to the input text.
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2. Relevance Classifier and Contextual Re-ranking (Section 4):
By systematically scoring and reevaluating triplets based on both 
semantic closeness and evolving context, these components help 
offset mistakes from earlier extraction stages.

3. Path Generation (Section 4): When initial neighbourhood ex-
traction overlooks critical connections or forms disjoint sub-
graphs, path generation can reconnect relevant nodes by bridg-
ing partial subgraphs. This step effectively recovers certain rela-
tionships that might otherwise be lost due to early omissions or 
missteps.

These modules collectively ensure that errors in neighbourhood extrac-
tion typically exert only a minimal effect on the final retrieval quality 
for the datasets evaluated. As we expand our methodology to more 
specialized or large-scale KGs, a deeper look at how frequently mis-
alignment occurs and how effectively path generation and re-ranking 
correct it will be central to confirming our system’s robustness across 
diverse contexts.

6.6. Discussion of pre-trained model dependencies and knowledge base 
biases

We acknowledge the potential dependencies introduced by leverag-
ing both pre-trained embeddings (e.g., BERT) and external KGs such 
as ConceptNet. Nonetheless, like any curated resource, ConceptNet can 
exhibit coverage gaps and biases. Our modular design addresses these 
risks by allowing the substitution of alternative or domain-specific KGs 
as they become available, thereby reducing over-reliance on any single 
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Fig. 9. Comparison of Hits@1 across multiple datasets with error bars. The plots depict the performance of various methods on the SimpleQuestions, Mintaka, Commonsense_QA, 
OpenBook_QA, PubMed_QA, and Head_QA datasets. Error bars represent the difference between Hits@10 and Hits@1 for each method, indicating variability in the model’s ranking 
accuracy. A smaller error bar signifies that the method consistently ranks the correct answer higher among the top-K predictions, while a larger error bar suggests greater variability 
in ranking accuracy. If Hits@1 and Hits@10 scores are similar, the difference (Hits@10 - Hits@1) is minimal, resulting in a small or non-visible error bar, which indicates that 
the method consistently ranks correct answers very high. Larger error bars indicate a more significant difference between Hits@1 and Hits@10, meaning the method might not 
always rank the correct answer at the very top but frequently within the top 10.
source. Similarly, pre-trained language models inherit biases from their 
training corpora, which may influence retrieval outcomes. While our 
architecture currently utilizes BERT-based embeddings, future work 
will explore multiple embeddings and knowledge bases to broaden cov-
erage and minimize the impact of such biases, all without necessitating 
structural changes to our retrieval pipeline.

6.7. Zero-shot generalization and threshold rationale

While our approach is presented as zero-shot-capable, we acknowl-
edge that highly heterogeneous KGs may introduce domain-specific 
challenges. The key idea behind our zero-shot design is to embed the 
query text and triplets in a shared semantic space (using transformer-
based embeddings), bypassing explicit training or fine-tuning for each 
new KG schema. This strategy has shown promise across multiple tested 
domains (Section 6), but we have not yet systematically assessed its lim-
its on very large or highly specialized KGs. The thresholding steps in our 
triplet ranking (Sections 5.4.1 and 4) are primarily guided by empirical 
observations that show balancing coverage (i.e., extracting sufficient 
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context) against precision (i.e., filtering noise) yields favourable results. 
In practice, thresholds are set to moderate levels to avoid overfitting 
to a single domain. Though these choices may seem ad hoc, they 
reflect a minimal calibration process based on the dataset sizes and 
complexity we evaluated. Future work will formalize these thresholds 
by examining broader parameter sweeps and leveraging optimization 
techniques such as Bayesian optimization or reinforcement learning to 
determine optimal values systematically. Additionally, we aim to derive 
theoretical guarantees for zero-shot retrieval under extreme domain 
shifts (e.g., very sparse or unusually large KGs) by analysing retrieval 
stability and generalization bounds. We also plan to explore adaptive 
thresholding strategies that dynamically adjust retrieval depth based 
on feedback signals, such as confidence scores or user interactions, 
potentially using self-supervised learning or reinforcement learning to 
reduce reliance on domain-specific heuristics.

7. Conclusion

This paper proposes a novel direct fact retrieval framework from 
KGs, which retrieves triplets from external knowledge sources based on 
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natural language queries. The main applications of this research are in 
information retrieval and information extraction. This method can be 
used with any application of KG, such as Question-Answering Systems, 
Chatbots, Fact-Checking Systems, and many more, to efficiently and 
accurately extract information from KGs for any downstream task. Our 
key innovations are as follows: (i) a novel use of an attention-based 
matrix to identify relevant neighbourhoods in the KGs and remove 
irrelevant nodes from a combined neighbourhood, and (ii) a novel rel-
evance classifier strategy to improve triplet selection based on both the 
query and KG information. The combined A2Q framework can process 
multiple KGs and handle missing information links. A2Q performs on-
the-go triplet selection without being computationally expensive while 
achieving similar or better results than conventional methods.

CRediT authorship contribution statement

Akhil Chaudhary: Conceptualization, Methodology, Data curation, 
Writing, Visualization, Investigation, Software. Enayat Rajabi: Super-
vision, Reviewing, Editing, Validation, Funding acquisition, Project 
administration. Somayeh Kafaie: Supervision, Reviewing, Editing, Val-
idation, Funding acquisition. Evangelos Milios: Supervision, Review-
ing, Editing, Validation.

Funding

This research has been funded by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Discovery Grant (RGPIN-
2020-05869) and SMU Internal Research Grant 2023: Strategic Re-
search Grant (201690 6400 FGSR Internal Grant Fund).
14 
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix. Performance

In this section, we have done an extended performance analysis of 
the performance of A2Q across various datasets using numerous eval-
uation techniques. The heatmap (Fig.  A.10) provides a detailed view 
of the performance metrics across different methods on the Common-
sense_QA dataset. It clearly illustrates the superiority of the A2Q model, 
particularly in the Hits@1 and Hits@10 metrics, while also showing 
its robust performance in BERTScore and Coverage. Complementing 
this, the spider chart (Fig.  A.13) visualizes the comparative strengths 
and weaknesses of the top three and bottom three methods across all 
datasets, highlighting the A2Q model’s consistent excellence across all 
metrics. The parallel coordinates plots (Figs.  A.11 and A.12) offer a 
simultaneous comparison of Hits@1 and BERTScore across multiple 
datasets, further reinforcing A2Q’s reliability and robustness in diverse 
scenarios. Together, these visualizations offer a holistic view of the 
models’ performance, underscoring A2Q’s superiority and consistent 
high performance across different evaluation metrics and datasets.

Data availability

Data will be made available on request.
Fig. A.10. Heatmap of performance metrics for Commonsense_QA dataset. The heatmap illustrates the performance of different methods across Hits@1, Hits@10, BERTScore, 
and Coverage metrics. Each cell’s colour intensity reflects the performance value, with darker shades indicating better performance. This visual representation enables a quick 
comparison of methods, showing how A2Q consistently outperforms others across all metrics.
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Fig. A.11. Parallel coordinates plot showing Hits@1 performance across multiple datasets. This plot simultaneously visualizes the Hits@1 scores of various methods on the 
SimpleQuestions, Mintaka, CommonsenseQA, OpenBookQA, PubMedQA, and HeadQA datasets. Each line represents a method, allowing for a direct comparison of performance 
across different datasets. The red line corresponding to A2Q indicates its consistently high performance relative to other methods.

Fig. A.12. Parallel coordinates plot showing BERTScore performance across multiple datasets. This plot visualizes the BERTScore for various methods on the CommonsenseQA, 
OpenBookQA, PubMedQA, and HeadQA datasets. Each line represents a method, allowing for a direct comparison of semantic similarity performance across different datasets. The 
red line representing A2Q shows consistently high BERTScore values, indicating robust semantic relevance in its predictions compared to other methods.
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Fig. A.13. Spider chart comparing the top 3 and bottom 3 methods based on their average performance across all metrics. The chart displays Hits@1, Hits@10, BERTScore, and 
Coverage for each method, providing a visual summary of how the best and worst-performing methods differ in their capabilities. A2Q consistently shows strong performance 
across all metrics, as indicated by its position near the outer edge of the chart.
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