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Abstract— There is increased demand to run applications 
on mobile devices in recent years. Although many of these 
alluring applications are resource-intensive, they expect 
to get the same performance on mobile devices as on 
powerful non-mobile computers. On the other hand, 
considerations such as weight, size, and mobility impose 
constraints on mobile devices and restrict their processor 
speed, memory size and battery lifetime. Cyber foraging 
ameliorates this performance disparity by utilizing 
nearby non-mobile computers called surrogates to run 
the whole or parts of applications, which are offloaded 
from mobile devices. However, cyber foraging is not 
suitable for all circumstances. In this paper, we propose a 
mechanism to determine the best location, either a mobile 
device or best surrogate(s) around, to run an application 
by calculating the cost of offloading the task of running 
the application to each location according to the context’s 
metrics such as specifications of mobile device, 
surrogates, network, and application. Experimental 
results show that our proposed mechanism almost always 
selects the best one between local execution of the 
application on the mobile device and task offloading to 
surrogate(s) according to the current input size of the 
application, with respect to latency and energy 
consumption. 
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I. INTRODUCTION

The number of computers per user is evolving from one 
mainframe for many users, through one personal 
computer for everyone, to many computing devices as 
PDAs, cell phones, and laptops for every single user in 
pervasive computing environments [1]. Pervasive 
computing environment is introduced by Mark Weiser 
[2] as an environment which is augmented with 
computing resources and can provide information and 
services for users anytime and anywhere. Due to the 
important role of users in such environments, one of the 
most important keys of pervasive computing 
environments is mobility and using mobile devices [3].  

On the other hand, users expect to run applications 
on mobile devices and get the same performance as 
running them on powerful static computers. However, 

many of these tempting applications are resource-
intensive and hard to perform on mobile devices; 
speech recognizer [5, 6], language translator [5, 6], 
scientific calculator [4], and image manipulator [7, 8] 
are examples of such applications that may not perform 
on mobile devices at all or as good as on static 
computers.  

These applications require high computing power, 
memory, and battery lifetime which make their 
execution on mobile devices impossible or along with 
low and undesirable performance. Considerations such 
as weight, size, and heat dissipation that forms the 
nature of mobile devices impose severe restrictions on 
computational resources such as processor speed, 
memory size and disk capacity [8] and mobile devices 
are always resource poor in contrast with static 
computers. 

Satyanarayanan has introduced cyber foraging [9] or 
task offloading as a solution to resolve the challenges of 
executing resource intensive applications on resource 
constrained mobile devices in pervasive computing 
environments. In this approach, the idle static 
computers in the vicinity of mobile devices, called 
Surrogates, are used to execute the whole or some parts 
of resource-intensive application on behalf of the 
mobile device. However, there is a challenge: “Is cyber 
foraging approach reasonable in all situations?” 

To benefit from cyber foraging, some application 
related data, such as input parameters and application 
codes, must be sent from the mobile device to the 
surrogate and also the output results should be received. 
It is evident that if the cost of data transmission (i.e. 
communication cost) is more than the cost of local 
execution or computation cost, task offloading is not 
beneficial and local execution of application is superior 
to remote execution by cyber foraging. Therefore, an 
effective task scheduling and selecting the best location 
to run the task is needed to manage the trade-off 
between communication and computation cost of 
offloading the task. 

In this paper, we exploit the cyber foraging 
approach to improve the performance and battery 
lifetime on mobile devices. We introduce a mechanism 
to determine the best location to run the task that would 
be mobile device (i.e. not to offload the task) or best 
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surrogate(s) around by calculate the cost of offloading 
the task to each location according to the context’s 
metrics such as mobile device, surrogates, network, and 
application specifications. 

The remainder of the paper is organized as follows. 
Section II presents our proposed mechanism and 
describes its implementation detail. The results of 
experimental evaluations are depicted in Section III. 
Related researches on task offloading are discussed in 
Section IV, and Section V concludes the paper. 

II. PROPOSED MECHANISM

To augment the resources of mobile devices, we 
introduce a solver that is responsible for task scheduling 
and select the best location to run a task by calculating 
the cost of offloading for each location. However, there 
are three problems that should be resolved: 1) what is 
defined as the offloading cost? 2) what are the most 
important parameters affect the cost function? 3) how to 
calculate the offloading cost before real execution of 
the task? 

When a task is going to run, the solver calculates 
the cost for every available machine (i.e. the mobile 
device and surrogates) that satisfies two following 
conditions: 
a) Machine’s available memory is more than required 

memory of the task. 

b) The energy consumption of the mobile device to 
execute the task on this machine is less than 
available energy of mobile device.  

Then the solver makes a decision to offload the task to 
one of the nearby surrogates or runs the task locally. 
Actually, the solver chooses a location that has the 
minimum cost to run the task and also satisfies two 
mentioned conditions. Figure 1 shows an overview of 
our proposed mechanism. 

A. What is Defined as the Offloading Cost 
One of the most important constraints of mobile 

devices is energy consumption because energy cannot 
be replenished [10] and considerations such as weight 
and size of mobile devices limit battery lifetime. 
Nevertheless, nowadays users run more energy-
intensive applications on the mobile devices [11]. 

Therefore, we have considered energy consumption 
as an effective factor to make decision about the 
offloading. 

On the other hand, latency is an important factor for 
users and as the programs usually execute on the 
mobile device by user’s demand, the preferences of the 
user are another important metric. We define latency as 
the delay time between receive of application’s input 
from the user and presentation of application’s output to 
the user.  

Figure 1. An overview of our proposed mechanism 
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Therefore, we define the offloading cost function to 
improve two important factors of mobile devices, 
energy consumption and latency as (1). We calculate 
the cost value for each machine including surrogates 
and mobile device itself and the machine with the 
minimum cost value would be the offloading target. 

              (1) 

If cyber foraging causes a decrease in both latency and 
energy consumption, task offloading is effective and 
desirable. On the contrary, an increase in both latency 
and energy consumption may shows that task 
offloading is not beneficial. However, there are some 
cases that the variation of these two factors is on the 
opposite way. Selecting the best location in these cases 
is not straightforward and needs some considerations. 
For example, when battery life-time is low, solver 
should choose a location which minimizes energy 
consumption. On the other hand, for applications 
wherein time and latency is very important, latency cost 
is superior to energy cost. 

In our implementation, we assume if energy level of 
the mobile device is less than a defined threshold, 
solver selects the best location to minimize the energy 
consumption which means  and . In 
other cases, the weight of latency and energy in 
offloading cost function is equal (i.e. ).

B. Offloading Metrics 
We categorize the most important context information 
which influences the offloading cost function into three 
classes, as follows: 

- Mobile and surrogate specifications include 
processor speed, load and available memory of the 
mobile device and surrogates and available battery 
lifetime of the mobile device. 
To take into account current processing power (the 
combination of processor speed and load) of every 
machine to execute every task we define 
InstructionPmSecond parameter that will be 
described in Section II.C.1.  

- Application specifications include application 
code, input and output size. Furthermore, some 
parts of applications are not transferable to the 
surrogate, e.g. codes that interact with I/O devices 
[11-13], and native methods of a language with 
different implementations on different platforms 
[1]. Because application code and input are 
available before calculating offloading cost, their 
size can be specified by the solver. Although 
output size is not available before task execution, 
in most cases it is a constant value with a definite 
size or it can be estimated in terms of input value 
or input size. 

- Network specifications include type and 
bandwidth of communication network. 
Due to some reasons that will be discussed in 
Section II.C.2, network information used by the 
solver is constant and is measured in advance. 

Solver uses these specifications in 3 context descriptor 
file as mobile context, surrogate context and application 
context according to Figure 1. 

C. Latency Estimation 
We define latency as the delay between receiving the 
application’s input from the user and delivering the 
application’s output to the user. Our proposed solver 
estimates the latency for two different cases:  
a) Remote execution that means a surrogate is 

candidate for execution location. 
b) Local execution or executing the task on the 

mobile device. 

We can calculate latency for both mentioned cases by 
(2). 

         (2) 

1)  Computation Time 
Computation time, indicated by  in (2) 
is equal to execution time of the application on each 
location (i.e. the mobile device and surrogates). 

Almost all previous works use online profiling to 
estimate computation time. In fact, they monitor 
execution time of every task and generate either a 
simple linear model of application behavior [6, 11, 14, 
15] or the average execution time of previous runs [1, 4, 
16, 17] to estimate execution time of future runs. 

In contrast with these researches, we use offline 
profiling. To estimate computation time, we define a 
Function for every task which is calculated simply 
according to the time complexity order of the task. For 
example, the value of Function for finding matrix 
determinant application is N!, where N is the row count 
or is  for selection sort, where N is the array size. 
Furthermore we define InstructionPmSecond parameter 
for every task and machine that is calculated by (3). 

            (3) 

Function parameter for every task has been specified by 
task developer in advance. On the other hand, 
InstructionPmSecond parameter is measured by offline 
profiling for every task and the mobile device and is 
available before task execution in application context 
descriptor. To calculate InstructionPmSecond 
parameter for surrogates, we use following method.  

When the mobile device is going to run a task 
whose corresponding InstructionPmSecond parameter 
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for some surrogates is not available (i.e. the surrogate 
was not profiled for that task before), we send a task 
profiler to surrogates. This profiler which has been 
generated by task developer in advance, contains 
application code with a comparatively small input data, 
runs the application on the surrogate, calculates 
InstructionPmSecond for the surrogate by (3), and 
sends back the calculated InstructionPmSecond
parameter to the solver. Then this parameter will be 
saved in the context descriptor of corresponding 
surrogate for next uses. 

Although calculating InstructionPmSecond in this 
way imposes a little latency to the system for the first 
run, the experimental results in Section III shows that 
the precious effect of this factor to have a good 
estimation of execution time can well cover the 
imposed overhead. 

To calculate the execution time for corresponding 
input value on every machine, the solver calculates the 
Function(N) score for the input value of the application 
presented in the application context description by 
substituting input value for N parameter. The result is 
then divided by InstructionPmSecond of each machine 
to estimate the execution time of the application on each 
machine for the specific input value. 

2)  Communication Time 
It is evident that communication time, indicated by 

 in (2) is equal to zero, for local 
execution on the mobile device. But in Remote 
execution case,  is calculated by (4) 
and includes two parts: 1) the time is taken to send 
related data such as input data and application code to 
the selected location, and 2) the time of receiving the 
output data from the selected location.  

         (4) 

and are calculated in terms of 
Data Transmission Rate and Transmission Data Size by 
(5). 

           (5) 

Transmission Data usually includes input, output and 
code of the task and we discussed their size earlier in 
Section II.B. On the other hand, there are some ways to 
estimate Data Transmission Rate. Transferring a 
sample file with specific size, online, is one possible 
solution [11]. Figure 2 shows transmission time of a 50 
KB file from the mobile device to a surrogate in WLAN 
network, for 50 iterations. 

As Figure 2 shows, results are various and Data 
Transmission Rate cannot be calculated using only one 
transfer time of a file. To have a reliable Data 
Transmission Rate, data should be repeatedly 
transmitted which generates large amounts of traffic on 
the network that is not desirable. 

Figure 2. Transmission time of a 50 KB file between a mobile 
device and a surrogate 

   
Using adaptive history-based approach is another 
possible solution. It means measuring Data 
Transmission Rate whenever data is transmitting 
between two nodes and using it for future estimations 
[6, 14]. Figure 3 shows the average measured Data 
Transmission Rate in 50 iterations for different file 
sizes. 

According to Figure 3, the data is transferred faster 
for larger files. It is because of the nature of TCP 
connections. When the file size is growing, the sliding 
window is expanded to speed up the transfer [16]. 
Therefore, if for example, the measured Data 
Transmission Rate by transfer a 5 KB file is used to 
estimate transmission time of a 5 MB file, the 
calculated cost by the solver is not precise and it may 
cause a wrong decision about execution location. 

According to the previous discussion, we used a 
third solution. We defined Data Transmission Rate as a 
constant value for different ranges of transmission data 
size. We have measured these values by offline 
profiling for an IEEE 802.11 b/g WLAN network that is 
used in our experiments. The results are described in 
Table I. Our experimental results in Section III show 
the constant value works good enough and also it does 
not impose any overhead on the system.  

Figure 3. Data transmission rate for different file sizes 
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TABLE I. DATA TRANSMISSION RATE FOR DIFFERENT SIZES

Transmission Data 
Size (KB) <350 >350 & <700 >700 

Transmission Data 
Rate (KB/S) 280 350 390 

D. Estimation of Energy Consumption 
We estimated energy consumption of mobile device in 
various states (i.e. idle, computing, sending, and 
receiving) in terms of the time. We monitored energy 
consumption of mobile device in these states by 
PowerGuard V1.3 [18]. This software monitors the 
current and voltage of the mobile device and calculates 
a value as mAh, too. We estimated energy consumption 
rate by (6) to (9). Table II shows the result. 

 (6) 

          (7) 

           (8) 

     (9) 

TABLE II. ENERGY CONSUMPTION RATE FOR THE MOBILE 
DEVICE

Wireless 
Network Mobile Status Energy Consumption Rate 

(Joule/S) 

On

Idle 0.137 

Sending 0.975 

Receiving 0.78 

Computing 0.628 

Off 
Idle 0.123 

Computing 0.560 

According to these energy rates, we define energy 
consumption of mobile device in local and remote 
execution cases by (10) and (11). 

    (10) 

 

(11) 

III. EXPERIMENTS

To quantify the effectiveness of our proposed 
mechanism, we construct a test bed and design several 
experimental scenarios. The test bed consists of one 
surrogate and one HTC Touch 2 smartphone. The 
mobile device is connected to the surrogate via IEEE 
802.11b/g WLAN. Table III describes the detailed 
configurations of these machines. 

We evaluate our proposed mechanism with regard 
to latency and energy consumption in 3 scenarios: 1) 
local execution where the mobile device executes the 
task itself, 2) remote execution or offloading where the 
mobile device sends application code and input data to 
a surrogate to execute the task on behalf of it, 3) using 
our proposed mechanism to find the best execution 
location according to the current situations and run it. 

We evaluate the benefits of our proposed 
mechanism on 20 iterations of running two applications 
in terms of different inputs where user intends to run an 
application of selection sort of an array in terms of 
various array sizes and an application of matrix 
determinant in terms of different row counts. Both of 
these applications are CPU-intensive and the output size 
of the latter is a constant value, while the former has an 
output size equal to input size. Figure 4 and Figure 5 
show used context descriptor files for these two 
applications. 

Figure 4. Context specification of the matrix determinant
application 

TABLE III. CONFIGURATION OF DEVICES USED IN THE EXPERIMENTS

Type Processor Memory Operating System 

Mobile device Qualcomm MSM7225™ 528 MHz 256 MB Windows Mobile 6.5 Professional 

Surrogate Intel Core 2Duo 2.5 GHz 4 GB Windows 7 Professional 
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Figure 5. Context specification of the selection sort application 

A. Latency
Latency is defined as the amount of time is taken to 
respond upon a user-triggered request. Usually, less 
latency causes more users’ satisfaction. To evaluate the 
impact of our proposed mechanism on latency, we 
measured it on three mentioned scenario in 20 
iterations. Figure 6 and 7 show the average latency for 
two applications of matrix determinant and selection 
sort, respectively. To emphasize on latency in this case, 
we set ,  in (1). 

Figure 6. Latency comparison for matrix determinant application 

Figure 7. Latency comparison for selection sort application 

B. Energy Consumption 
In today’s world, user demand to run resource intensive 
applications on mobile devices is increasing and one of 
the most important resources of mobile devices is 
energy. Cuervo et al. [11] show that how fast the 
battery of mobile devices is drained by running a 
resource intensive application that its usage on mobile 
devices is not unrealistic. Therefore, a good offloading 
mechanism should focus on consuming as low energy 
as possible.  

We evaluate energy consumption of our proposed 
method by running the applications of matrix 
determinant and selection sort in three mentioned 
scenario (i.e. local execution, blind offloading, and 
using our solver). Figure 8 and Figure 9 show the result 
for this experiment. We set , and  in (1), 
due to emphasize on energy consumption. Also, in the 
case of local execution, the WiFi interface of the mobile 
device is turned off to preserve energy resources. 

Figure 8. Comparison of energy consumption for matrix 
determinant application 

Figure 9. Comparison of energy consumption for selection sort
application 
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IV. RELATED WORK

The idea of cyber foraging in pervasive computing 
environments was introduced by Satyanarayanan [9]. 
Spectra [6, 15] and Chroma [5, 14] are the first cyber 
foraging systems that improve latency and energy 
consumption of mobile devices. They monitor available 
resources on the mobile device and nearby surrogates 
and use the results and monitored costs of previous 
executions to estimate the execution cost of future runs. 

Gu et al. [1, 19] and Ou et al. [4, 13] have used a 
graph model to partition the application and select an 
execution location for every part. While Gu et al.
partition applications according to the required memory 
of each part and available memory on every location, 
Ou et al. take into account CPU and bandwidth 
constraints, too. 

Curvo et al. have introduced a cyber-foraging 
system called MAUI [11] and select the best location to 
execute a task according to the energy consumption. 
MAUI profiles energy consumption of the mobile 
device in previous executions of every task on every 
machine and presents a model of energy consumption 
to estimate it in next runs.  

On the other hand, Kristensen has introduced 
Scavenger [16, 17], a cyber-foraging system to improve 
latency in mobile devices. Scavenger calculates the 
average of previous execution time of every task on 
every machine and saves them in some buckets 
according to the input value. 

All mentioned works have used adaptive history-
based approach and online profiling to estimate 
execution time on mobile device and surrogates. In fact, 
they use previous runs to estimate execution time on 
future ones. There are some shortcomings with this 
approach: 
a) In first executions, there is no valid estimation of 

execution time to use by solver and solver’s 
decisions are probably wrong. 

b) The effect of input size on execution time is not 
considered or doesn’t have enough precision. 

c) History-based approach imposes dynamic 
profiling overhead to the system.  

On the contrary, we don’t need to save information of 
previous runs and we estimate execution time in terms 
of input size with high precision simply, by defining 
two factors as Function and InstructionPmSecond for 
every task and much less dynamic profiling overhead. 

V. SUMMARY

With ever increasing usage of mobile devices in today’s 
life, users expect to run the same applications on mobile 
devices and static computers. However mobile devices 
have always suffered from resource constraints, in 
comparison with static computers, to run complex and 
high computational applications. Cyber foraging or task 

offloading is one of the most common solutions to 
resource poverty of mobile devices, especially in 
pervasive computing environments.  

However, cyber foraging idea is not beneficial in all 
situations and there is a need to manage the trade-off 
between computation and communication cost of task 
offloading according to the current situations. To 
manage this trade-off, we calculated the offloading cost 
for the mobile device and every available surrogate. In 
order to select the best location to run a task, our 
proposed mechanism takes into account context metrics 
such as mobile device, surrogates, communication 
network, and application specifications.  

Also, we introduced a good solution to have an 
acceptable estimation of execution time and energy 
consumption, before real execution. The experimental 
results show that our proposed solver almost always 
selects the best location to run a task that would be the 
mobile device, itself or a surrogate. our proposed 
mechanism, preserve nearly the same response time and 
energy consumption compared to blind offloading 
approach, when it decides to offload the task; and 
nearly the same response time and energy consumption 
compared to local execution on mobile device, when it 
decides to execute the task on mobile phone. 
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