
Augmented Mobile Devices through Cyber Foraging

Somayeh Kafaie, Omid Kashefi, and Mohsen Sharifi
School of Computer Engineering

Iran University of Science and Technology
Tehran, Iran

so_kafaie@comp.iust.ac.ir, kashefi@{ieee.org, iust.ac.ir}, msharifi@iust.ac.ir

Abstract— There is increased demand to run applications
on mobile devices in recent years. Although many of these
alluring applications are resource-intensive, they expect
to get the same performance on mobile devices as on
powerful non-mobile computers. On the other hand,
considerations such as weight, size, and mobility impose
constraints on mobile devices and restrict their processor
speed, memory size and battery lifetime. Cyber foraging
ameliorates this performance disparity by utilizing
nearby non-mobile computers called surrogates to run
the whole or parts of applications, which are offloaded
from mobile devices. However, cyber foraging is not
suitable for all circumstances. In this paper, we propose a
mechanism to determine the best location, either a mobile
device or best surrogate(s) around, to run an application
by calculating the cost of offloading the task of running
the application to each location according to the context’s
metrics such as specifications of mobile device,
surrogates, network, and application. Experimental
results show that our proposed mechanism almost always
selects the best one between local execution of the
application on the mobile device and task offloading to
surrogate(s) according to the current input size of the
application, with respect to latency and energy
consumption.

Keywords- Pervasive Computing; Cyber Foraging;
Resource; Mobile Devices; Surrogate; Energy; Latency

I. INTRODUCTION

The number of computers per user is evolving from one
mainframe for many users, through one personal
computer for everyone, to many computing devices as
PDAs, cell phones, and laptops for every single user in
pervasive computing environments [1]. Pervasive
computing environment is introduced by Mark Weiser
[2] as an environment which is augmented with
computing resources and can provide information and
services for users anytime and anywhere. Due to the
important role of users in such environments, one of the
most important keys of pervasive computing
environments is mobility and using mobile devices [3].

On the other hand, users expect to run applications
on mobile devices and get the same performance as
running them on powerful static computers. However,

many of these tempting applications are resource-
intensive and hard to perform on mobile devices;
speech recognizer [5, 6], language translator [5, 6],
scientific calculator [4], and image manipulator [7, 8]
are examples of such applications that may not perform
on mobile devices at all or as good as on static
computers.

These applications require high computing power,
memory, and battery lifetime which make their
execution on mobile devices impossible or along with
low and undesirable performance. Considerations such
as weight, size, and heat dissipation that forms the
nature of mobile devices impose severe restrictions on
computational resources such as processor speed,
memory size and disk capacity [8] and mobile devices
are always resource poor in contrast with static
computers.

Satyanarayanan has introduced cyber foraging [9] or
task offloading as a solution to resolve the challenges of
executing resource intensive applications on resource
constrained mobile devices in pervasive computing
environments. In this approach, the idle static
computers in the vicinity of mobile devices, called
Surrogates, are used to execute the whole or some parts
of resource-intensive application on behalf of the
mobile device. However, there is a challenge: “Is cyber
foraging approach reasonable in all situations?”

To benefit from cyber foraging, some application
related data, such as input parameters and application
codes, must be sent from the mobile device to the
surrogate and also the output results should be received.
It is evident that if the cost of data transmission (i.e.
communication cost) is more than the cost of local
execution or computation cost, task offloading is not
beneficial and local execution of application is superior
to remote execution by cyber foraging. Therefore, an
effective task scheduling and selecting the best location
to run the task is needed to manage the trade-off
between communication and computation cost of
offloading the task.

In this paper, we exploit the cyber foraging
approach to improve the performance and battery
lifetime on mobile devices. We introduce a mechanism
to determine the best location to run the task that would
be mobile device (i.e. not to offload the task) or best

2011 10th International Symposium on Parallel and Distributed Computing

978-0-7695-4540-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPDC.2011.30

145

surrogate(s) around by calculate the cost of offloading
the task to each location according to the context’s
metrics such as mobile device, surrogates, network, and
application specifications.

The remainder of the paper is organized as follows.
Section II presents our proposed mechanism and
describes its implementation detail. The results of
experimental evaluations are depicted in Section III.
Related researches on task offloading are discussed in
Section IV, and Section V concludes the paper.

II. PROPOSED MECHANISM

To augment the resources of mobile devices, we
introduce a solver that is responsible for task scheduling
and select the best location to run a task by calculating
the cost of offloading for each location. However, there
are three problems that should be resolved: 1) what is
defined as the offloading cost? 2) what are the most
important parameters affect the cost function? 3) how to
calculate the offloading cost before real execution of
the task?

When a task is going to run, the solver calculates
the cost for every available machine (i.e. the mobile
device and surrogates) that satisfies two following
conditions:
a) Machine’s available memory is more than required

memory of the task.

b) The energy consumption of the mobile device to
execute the task on this machine is less than
available energy of mobile device.

Then the solver makes a decision to offload the task to
one of the nearby surrogates or runs the task locally.
Actually, the solver chooses a location that has the
minimum cost to run the task and also satisfies two
mentioned conditions. Figure 1 shows an overview of
our proposed mechanism.

A. What is Defined as the Offloading Cost
One of the most important constraints of mobile

devices is energy consumption because energy cannot
be replenished [10] and considerations such as weight
and size of mobile devices limit battery lifetime.
Nevertheless, nowadays users run more energy-
intensive applications on the mobile devices [11].

Therefore, we have considered energy consumption
as an effective factor to make decision about the
offloading.

On the other hand, latency is an important factor for
users and as the programs usually execute on the
mobile device by user’s demand, the preferences of the
user are another important metric. We define latency as
the delay time between receive of application’s input
from the user and presentation of application’s output to
the user.

Figure 1. An overview of our proposed mechanism

146

Therefore, we define the offloading cost function to
improve two important factors of mobile devices,
energy consumption and latency as (1). We calculate
the cost value for each machine including surrogates
and mobile device itself and the machine with the
minimum cost value would be the offloading target.

 (1)

If cyber foraging causes a decrease in both latency and
energy consumption, task offloading is effective and
desirable. On the contrary, an increase in both latency
and energy consumption may shows that task
offloading is not beneficial. However, there are some
cases that the variation of these two factors is on the
opposite way. Selecting the best location in these cases
is not straightforward and needs some considerations.
For example, when battery life-time is low, solver
should choose a location which minimizes energy
consumption. On the other hand, for applications
wherein time and latency is very important, latency cost
is superior to energy cost.

In our implementation, we assume if energy level of
the mobile device is less than a defined threshold,
solver selects the best location to minimize the energy
consumption which means and . In
other cases, the weight of latency and energy in
offloading cost function is equal (i.e.).

B. Offloading Metrics
We categorize the most important context information
which influences the offloading cost function into three
classes, as follows:

- Mobile and surrogate specifications include
processor speed, load and available memory of the
mobile device and surrogates and available battery
lifetime of the mobile device.
To take into account current processing power (the
combination of processor speed and load) of every
machine to execute every task we define
InstructionPmSecond parameter that will be
described in Section II.C.1.

- Application specifications include application
code, input and output size. Furthermore, some
parts of applications are not transferable to the
surrogate, e.g. codes that interact with I/O devices
[11-13], and native methods of a language with
different implementations on different platforms
[1]. Because application code and input are
available before calculating offloading cost, their
size can be specified by the solver. Although
output size is not available before task execution,
in most cases it is a constant value with a definite
size or it can be estimated in terms of input value
or input size.

- Network specifications include type and
bandwidth of communication network.
Due to some reasons that will be discussed in
Section II.C.2, network information used by the
solver is constant and is measured in advance.

Solver uses these specifications in 3 context descriptor
file as mobile context, surrogate context and application
context according to Figure 1.

C. Latency Estimation
We define latency as the delay between receiving the
application’s input from the user and delivering the
application’s output to the user. Our proposed solver
estimates the latency for two different cases:
a) Remote execution that means a surrogate is

candidate for execution location.
b) Local execution or executing the task on the

mobile device.

We can calculate latency for both mentioned cases by
(2).

 (2)

1) Computation Time
Computation time, indicated by in (2)
is equal to execution time of the application on each
location (i.e. the mobile device and surrogates).

Almost all previous works use online profiling to
estimate computation time. In fact, they monitor
execution time of every task and generate either a
simple linear model of application behavior [6, 11, 14,
15] or the average execution time of previous runs [1, 4,
16, 17] to estimate execution time of future runs.

In contrast with these researches, we use offline
profiling. To estimate computation time, we define a
Function for every task which is calculated simply
according to the time complexity order of the task. For
example, the value of Function for finding matrix
determinant application is N!, where N is the row count
or is for selection sort, where N is the array size.
Furthermore we define InstructionPmSecond parameter
for every task and machine that is calculated by (3).

 (3)

Function parameter for every task has been specified by
task developer in advance. On the other hand,
InstructionPmSecond parameter is measured by offline
profiling for every task and the mobile device and is
available before task execution in application context
descriptor. To calculate InstructionPmSecond
parameter for surrogates, we use following method.

When the mobile device is going to run a task
whose corresponding InstructionPmSecond parameter

147

for some surrogates is not available (i.e. the surrogate
was not profiled for that task before), we send a task
profiler to surrogates. This profiler which has been
generated by task developer in advance, contains
application code with a comparatively small input data,
runs the application on the surrogate, calculates
InstructionPmSecond for the surrogate by (3), and
sends back the calculated InstructionPmSecond
parameter to the solver. Then this parameter will be
saved in the context descriptor of corresponding
surrogate for next uses.

Although calculating InstructionPmSecond in this
way imposes a little latency to the system for the first
run, the experimental results in Section III shows that
the precious effect of this factor to have a good
estimation of execution time can well cover the
imposed overhead.

To calculate the execution time for corresponding
input value on every machine, the solver calculates the
Function(N) score for the input value of the application
presented in the application context description by
substituting input value for N parameter. The result is
then divided by InstructionPmSecond of each machine
to estimate the execution time of the application on each
machine for the specific input value.

2) Communication Time
It is evident that communication time, indicated by

 in (2) is equal to zero, for local
execution on the mobile device. But in Remote
execution case, is calculated by (4)
and includes two parts: 1) the time is taken to send
related data such as input data and application code to
the selected location, and 2) the time of receiving the
output data from the selected location.

 (4)

and are calculated in terms of
Data Transmission Rate and Transmission Data Size by
(5).

 (5)

Transmission Data usually includes input, output and
code of the task and we discussed their size earlier in
Section II.B. On the other hand, there are some ways to
estimate Data Transmission Rate. Transferring a
sample file with specific size, online, is one possible
solution [11]. Figure 2 shows transmission time of a 50
KB file from the mobile device to a surrogate in WLAN
network, for 50 iterations.

As Figure 2 shows, results are various and Data
Transmission Rate cannot be calculated using only one
transfer time of a file. To have a reliable Data
Transmission Rate, data should be repeatedly
transmitted which generates large amounts of traffic on
the network that is not desirable.

Figure 2. Transmission time of a 50 KB file between a mobile
device and a surrogate

Using adaptive history-based approach is another
possible solution. It means measuring Data
Transmission Rate whenever data is transmitting
between two nodes and using it for future estimations
[6, 14]. Figure 3 shows the average measured Data
Transmission Rate in 50 iterations for different file
sizes.

According to Figure 3, the data is transferred faster
for larger files. It is because of the nature of TCP
connections. When the file size is growing, the sliding
window is expanded to speed up the transfer [16].
Therefore, if for example, the measured Data
Transmission Rate by transfer a 5 KB file is used to
estimate transmission time of a 5 MB file, the
calculated cost by the solver is not precise and it may
cause a wrong decision about execution location.

According to the previous discussion, we used a
third solution. We defined Data Transmission Rate as a
constant value for different ranges of transmission data
size. We have measured these values by offline
profiling for an IEEE 802.11 b/g WLAN network that is
used in our experiments. The results are described in
Table I. Our experimental results in Section III show
the constant value works good enough and also it does
not impose any overhead on the system.

Figure 3. Data transmission rate for different file sizes

100

150

200

250

300

350

400

450

1 3 5 7 9 1113151719212325272931333537394143454749

Tr
an

sm
is

si
on

 T
im

e
(m

S)

Times

150

200

250

300

350

400

450

0.005 0.025 0.05 0.15 0.3 0.5 0.8 1 1.3 1.6 2 3

D
at

a
Tr

an
sm

is
si

on
 R

at
e

(K
B/

S)

File size (MB)

148

TABLE I. DATA TRANSMISSION RATE FOR DIFFERENT SIZES

Transmission Data
Size (KB) <350 >350 & <700 >700

Transmission Data
Rate (KB/S) 280 350 390

D. Estimation of Energy Consumption
We estimated energy consumption of mobile device in
various states (i.e. idle, computing, sending, and
receiving) in terms of the time. We monitored energy
consumption of mobile device in these states by
PowerGuard V1.3 [18]. This software monitors the
current and voltage of the mobile device and calculates
a value as mAh, too. We estimated energy consumption
rate by (6) to (9). Table II shows the result.

 (6)

 (7)

 (8)

 (9)

TABLE II. ENERGY CONSUMPTION RATE FOR THE MOBILE
DEVICE

Wireless
Network Mobile Status Energy Consumption Rate

(Joule/S)

On

Idle 0.137

Sending 0.975

Receiving 0.78

Computing 0.628

Off
Idle 0.123

Computing 0.560

According to these energy rates, we define energy
consumption of mobile device in local and remote
execution cases by (10) and (11).

 (10)

(11)

III. EXPERIMENTS

To quantify the effectiveness of our proposed
mechanism, we construct a test bed and design several
experimental scenarios. The test bed consists of one
surrogate and one HTC Touch 2 smartphone. The
mobile device is connected to the surrogate via IEEE
802.11b/g WLAN. Table III describes the detailed
configurations of these machines.

We evaluate our proposed mechanism with regard
to latency and energy consumption in 3 scenarios: 1)
local execution where the mobile device executes the
task itself, 2) remote execution or offloading where the
mobile device sends application code and input data to
a surrogate to execute the task on behalf of it, 3) using
our proposed mechanism to find the best execution
location according to the current situations and run it.

We evaluate the benefits of our proposed
mechanism on 20 iterations of running two applications
in terms of different inputs where user intends to run an
application of selection sort of an array in terms of
various array sizes and an application of matrix
determinant in terms of different row counts. Both of
these applications are CPU-intensive and the output size
of the latter is a constant value, while the former has an
output size equal to input size. Figure 4 and Figure 5
show used context descriptor files for these two
applications.

Figure 4. Context specification of the matrix determinant
application

TABLE III. CONFIGURATION OF DEVICES USED IN THE EXPERIMENTS

Type Processor Memory Operating System

Mobile device Qualcomm MSM7225™ 528 MHz 256 MB Windows Mobile 6.5 Professional

Surrogate Intel Core 2Duo 2.5 GHz 4 GB Windows 7 Professional

149

Figure 5. Context specification of the selection sort application

A. Latency
Latency is defined as the amount of time is taken to
respond upon a user-triggered request. Usually, less
latency causes more users’ satisfaction. To evaluate the
impact of our proposed mechanism on latency, we
measured it on three mentioned scenario in 20
iterations. Figure 6 and 7 show the average latency for
two applications of matrix determinant and selection
sort, respectively. To emphasize on latency in this case,
we set , in (1).

Figure 6. Latency comparison for matrix determinant application

Figure 7. Latency comparison for selection sort application

B. Energy Consumption
In today’s world, user demand to run resource intensive
applications on mobile devices is increasing and one of
the most important resources of mobile devices is
energy. Cuervo et al. [11] show that how fast the
battery of mobile devices is drained by running a
resource intensive application that its usage on mobile
devices is not unrealistic. Therefore, a good offloading
mechanism should focus on consuming as low energy
as possible.

We evaluate energy consumption of our proposed
method by running the applications of matrix
determinant and selection sort in three mentioned
scenario (i.e. local execution, blind offloading, and
using our solver). Figure 8 and Figure 9 show the result
for this experiment. We set , and in (1),
due to emphasize on energy consumption. Also, in the
case of local execution, the WiFi interface of the mobile
device is turned off to preserve energy resources.

Figure 8. Comparison of energy consumption for matrix
determinant application

Figure 9. Comparison of energy consumption for selection sort
application

0

5000

10000

15000

20000

25000

30000

35000

40000

2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
S)

Row count in Matrix

Local Execution

Offloading

Our Solver

0

2000

4000

6000

8000

10000

12000

14000

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 7000

La
te

nc
y

(m
S)

Array size

Local Execution

Offloading

Our Solver

0

2000

4000

6000

8000

10000

12000

14000

6 7 8 9 10

En
er

gy
 (m

ill
i J

ou
le

)

Row count in Matrix

Local Execution

Offloading

Our Solver

0

1000

2000

3000

4000

5000

6000

7000

8000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 7000 7500

En
er

gy
 (m

ill
i J

ou
le

)

Array size

Local Execution

Offloading

Our Solver

150

IV. RELATED WORK

The idea of cyber foraging in pervasive computing
environments was introduced by Satyanarayanan [9].
Spectra [6, 15] and Chroma [5, 14] are the first cyber
foraging systems that improve latency and energy
consumption of mobile devices. They monitor available
resources on the mobile device and nearby surrogates
and use the results and monitored costs of previous
executions to estimate the execution cost of future runs.

Gu et al. [1, 19] and Ou et al. [4, 13] have used a
graph model to partition the application and select an
execution location for every part. While Gu et al.
partition applications according to the required memory
of each part and available memory on every location,
Ou et al. take into account CPU and bandwidth
constraints, too.

Curvo et al. have introduced a cyber-foraging
system called MAUI [11] and select the best location to
execute a task according to the energy consumption.
MAUI profiles energy consumption of the mobile
device in previous executions of every task on every
machine and presents a model of energy consumption
to estimate it in next runs.

On the other hand, Kristensen has introduced
Scavenger [16, 17], a cyber-foraging system to improve
latency in mobile devices. Scavenger calculates the
average of previous execution time of every task on
every machine and saves them in some buckets
according to the input value.

All mentioned works have used adaptive history-
based approach and online profiling to estimate
execution time on mobile device and surrogates. In fact,
they use previous runs to estimate execution time on
future ones. There are some shortcomings with this
approach:
a) In first executions, there is no valid estimation of

execution time to use by solver and solver’s
decisions are probably wrong.

b) The effect of input size on execution time is not
considered or doesn’t have enough precision.

c) History-based approach imposes dynamic
profiling overhead to the system.

On the contrary, we don’t need to save information of
previous runs and we estimate execution time in terms
of input size with high precision simply, by defining
two factors as Function and InstructionPmSecond for
every task and much less dynamic profiling overhead.

V. SUMMARY

With ever increasing usage of mobile devices in today’s
life, users expect to run the same applications on mobile
devices and static computers. However mobile devices
have always suffered from resource constraints, in
comparison with static computers, to run complex and
high computational applications. Cyber foraging or task

offloading is one of the most common solutions to
resource poverty of mobile devices, especially in
pervasive computing environments.

However, cyber foraging idea is not beneficial in all
situations and there is a need to manage the trade-off
between computation and communication cost of task
offloading according to the current situations. To
manage this trade-off, we calculated the offloading cost
for the mobile device and every available surrogate. In
order to select the best location to run a task, our
proposed mechanism takes into account context metrics
such as mobile device, surrogates, communication
network, and application specifications.

Also, we introduced a good solution to have an
acceptable estimation of execution time and energy
consumption, before real execution. The experimental
results show that our proposed solver almost always
selects the best location to run a task that would be the
mobile device, itself or a surrogate. our proposed
mechanism, preserve nearly the same response time and
energy consumption compared to blind offloading
approach, when it decides to offload the task; and
nearly the same response time and energy consumption
compared to local execution on mobile device, when it
decides to execute the task on mobile phone.

REFERENCES

[1] X. Gu, A. Messer, I. Greenbergx, D. Milojicic, and K.
Nahrstedt, "Adaptive Offloading for Pervasive Computing,"
IEEE Pervasive Computing Magazine, vol. 3, no. 3, pp. 66-73,
July 2004.

[2] M. Weiser, "The Computer for the 21st Century," Scientific
American Special Issue on Communications, Computers, and
Networks, pp. 94-104, September 1991.

[3] L. Kolos-Mazuryk, R. Wieringa, and P. Van Eck,
"Development of a Requirements Engineering Method for
Pervasive Services," in RE '05 Doctoral Consortium,
Paris,France, 2005.

[4] S. Ou, K. Yang, and Q. Zhang, "An Efficient Runtime
Offloading Approach for Pervasive Services," in IEEE
Wireless Communications & Networking Conference
(WCNC2006), Las Vegas, 2006, pp. 2229-2234.

[5] R. K. Balan, G. Gergle, M. Satyanarayanan, and J. Herbsleb,
"Simplifying Cyber Foraging for Mobile Devices," in 5th
USENIX International Conference on Mobile Systems,
Applications and Services (MobiSys), San Juan, Puerto Rico,
2007, pp. 272-285.

[6] J. Flinn, S. Park, and M. Satyanarayanan, "Balancing
Performance, Energy, and Quality in Pervasive Computing," in
22nd International Conference on Distributed Computing
Systems (ICDCS’02), Vienna, Austria, 2002, pp. 217-226.

[7] G. Chen, B. T. Kang, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and R. Chandramouli, "Studying Energy Trade Offs in
Offloading Computation/Compilation in Java-Enabled Mobile
Devices," IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 19, pp. 795-809, September 2004.

[8] M. Satyanarayanan, P. Bahl, R. Cáceres, N. Davies, "The Case
for VM-Based Cloudlets in Mobile Computing," IEEE
Pervasive Computing, vol. 8, no. 4, pp. 14-23, October-
December 2009.

151

[9] M. Satyanarayanan, "Pervasive Computing: Vision and
Challenges," IEEE Personal Communication, vol. 8, no. 4, pp.
10-17, August 2001.

[10] M. Satyanarayanan, "Avoiding Dead Batteries," IEEE
Pervasive Computing, vol. 4, no. 1, pp. 2-3, January-March
2005.

[11] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.
Saroiu, R. Chandra, and P. Bahl, "MAUI: Making Smartphones
Last Longer with Code Offload," in 8th international
conference on Mobile systems, applications, and services
(ACM MobiSys'10), San Francisco, USA, 2010, pp. 49-62.

[12] M. Othrnan, and S. Hailes, "Power Conservation Strategy for
Mobile Computers Using load sharing," Mobile Computing and
Communications Review, vol. 2, no. 1, pp. 19-26, January
1998.

[13] S. Ou, K. Yang, and A. Liotta, "An Adaptive Multi-Constraint
Partitioning Algorithm for Offloading in Pervasive Systems,"
in 4th Annual IEEE International Conference on Pervasive
Computing and Communications (PERCOM’06), Pisa, Italy,
2006, pp. 116-125.

[14] R. K. Balan, M. Satyanarayanan, S. Park, and T. Okoshi,
"Tactics-Based Remote Execution for Mobile Computing," in

1st International Conference on Mobile Systems, Applications
and Services, San Francisco, 2003, pp. 273-286.

[15] J. Flinn, D. Narayanan, and M. Satyanarayanan, "Self-Tuned
Remote Execution for Pervasive Computing," in 8th IEEE
Workshop Hot Topics in Operating Systems, Schloss Elmau,
Germany, 2001, pp. 61-66.

[16] M. D. Kristensen, "Empowering Mobile Devices through
Cyber Foraging:The Development of Scavenger, an Open
Mobile Cyber Foraging System," PhD Thesis, Department of
Computer Science, Aarhus University, Denmark, 2010.

[17] M. D. Kristensen, and N. O. Bouvin, "Scheduling and
Development Support in the Scavenger Cyber Foraging
System," Pervasive and Mobile Computing, vol. 1, no. 6, pp.
677-692, December 2010.

[18] PowerGuard.
 Available: http://www.vandenmuyzenberg.nl/PowerGuard/

[19] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic,
"Adaptive Offloading Inference for Delivering Applications in
Pervasive Computing Environments," in 1st IEEE International
Conference on Pervasive Computing and Communications
(PerCom’03), Fort Worth, Texas, USA, 2003, pp. 107-114.

152

