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Abstract
The heritability of complex diseases including cancer is often attributed to

multiple interacting genetic alterations. Such a non‐linear, non‐additive gene–
gene interaction effect, that is, epistasis, renders univariable analysis methods

ineffective for genome‐wide association studies. In recent years, network

science has seen increasing applications in modeling epistasis to characterize

the complex relationships between a large number of genetic variations and the

phenotypic outcome. In this study, by constructing a statistical epistasis

network of colorectal cancer (CRC), we proposed to use multiple network

measures to prioritize genes that influence the disease risk of CRC through

synergistic interaction effects. We computed and analyzed several global and

local properties of the large CRC epistasis network. We utilized topological

properties of network vertices such as the edge strength, vertex centrality, and

occurrence at different graphlets to identify genes that may be of potential

biological relevance to CRC. We found 512 top‐ranked single‐nucleotide
polymorphisms, among which COL22A1, RGS7, WWOX, and CELF2 were the

four susceptibility genes prioritized by all described metrics as the most

influential on CRC.
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1 | INTRODUCTION

Studies show that susceptibility to complex diseases such
as cancer is multifactorial, and both environmental and
genetic factors play an important role (Bookman et al.,
2011; Thomas, 2010). In recent years, genome‐wide
association studies (GWAS) (Hirschhorn & Daly, 2005;
Wang, Barratt, Clayton, & Todd, 2005) have identified
many genetic attributes and their association to complex
human disease (Hunter & Kraft, 2007). GWAS have
granted access to a significant number of single‐nucleo-
tide polymorphisms (SNPs) and, usually by designing
case‐control studies, aim to highlight a set of SNPs
statistically associated with a disease.

Many studies confirm that the association of individual
SNPs with complex phenotypes is usually of small effect
size, and the heritability of diseases cannot be explained by
any single SNP variants (Cordell, 2009; Thomas, 2010).
Therefore, the estimates of the causal effects of genes or any
other somatic variants should be studied carefully because
of epistasis or non‐linear interaction effect among multiple
genetic attributes (Cordell, 2002; Moore, 2003; Phillips,
2008; Verma et al., 2018; Wilkins, Cannataro, Shuch, &
Townsend, 2018). Epistasis has been realized to contribute
significantly to the complex relationship between genetic
and phenotypic variations, especially in cancer (Im et al.,
2018; Park & Lehner, 2015). Studying epistasis in GWAS
context, SNP interactions associated with a particular
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complex trait, is significantly compute‐intensive and
challenging due to the large search space in GWAS
(Manduchi, Chesi, Hall, Grant, & Moore, 2018).

To model the complex relationship among this massive
number of attributes and their epistasis, the modern network
science (Barabási, 2016; Newman, 2002), emerged recently,
proposes a promising framework. Network science can be
applied to a vast variety of topics in biology, such as protein–
protein interaction networks (Rual et al., 2005; Stelzl, 2005),
genetic regulatory networks (Carninci, 2005), metabolic
networks (Duarte et al., 2007; Hu et al., 2018; Jeong,
Tombor, Albert, Oltvai, & Barabasi, 2000), RNA networks
(Lewis, Burge, & Bartel, 2005), gene coexpression networks
(Stuart, Segal, Koller, & Kim, 2003), and gene–gene
interaction networks (Beltrao, Cagney, & Krogan, 2010;
Boone, Bussey, & Andrews, 2007). Network science provides
required mathematical models and tools to predict the
performance of such complex networks with a significant
number of interactions involving genes, proteins, and
metabolites (Barabási, 2016), and their properties and
behaviors can be analyzed by studying certain attributes of
networks such as hub size, degree distribution, node
centrality, connectedness, and clustering coefficient. In fact,
it facilitates the structured representation of pairwise
interactions of genetic attributes and modeling their associa-
tion with complex phenotypic traits (Hu & Moore, 2013).

In this study, we proposed to use network analysis to
prioritize disease susceptibility genes. We constructed a
colorectal cancer (CRC) epistasis network based on
information gain (Cover & Thomas, 2006; Fan et al.,
2011). By treating genetic factors and phenotypic traits as
random variables, information‐theoretic measures can be
used to quantify the synergistic effect among genetic
attributes. In our network, vertices indicate the SNPs
while an edge between two of them represents an
interaction relationship significantly ( ≤p 0.01) stronger
than a threshold. We studied several global and local
properties of our CRC epistasis network such as the
degree distribution, centrality measures, assortativity
coefficient, and clustering coefficient, and found local
structures of the network (e.g., graphlets and motifs), to
rank SNPs based on their topological importance in the
epistasis network. Through functional annotation and
literature search, we identified a set of genes that might
be of potential biological relevance to CRC.

2 | METHODS

2.1 | CRC GWAS data set and
preprocessing

CRC is the third most common cancer globally, and more
than 1.2 million new cases of CRCs are diagnosed

worldwide each year. This type of cancer caused more
than 600,000 deaths around the world in 2008 (Ahmedin
et al., 2011), and more than 52,000 deaths in the United
States in 2015 (Siegel, Miller, & Jemal, 2018). CRC is a
disease of genome instability, and the accumulation of
genetic and epigenetic alterations transforming colonic
cells into adenocarcinoma cells is its driving force (Cao
et al., 2015). Therefore, studying the genetic component of
CRC can guide us to its better understanding and
identifying its predictive and influential genes leading to
more efficient diagnoses, treatment, and even prevention
(Dorani, Hu, Woods, & Zhai, 2018).

The data set used in this study was obtained from
Newfoundland Familial Colorectal Cancer Registries
(NFCCR), and included 265,195 SNPs. The study
participants included 656 cases and 496 controls, where
the CRC cases, diagnosed during 1999–2003, were
identified through the population tumor registry main-
tained by the Newfoundland Cancer Registry. Both case
and control participants were from 20 to 74 years old,
although cases were slightly older than controls (mean,
62.7 for cases and 60.5 for controls; Sun et al., 2011).
Controls were selected through random digit dialing
(Wang et al., 2009). For genotyping a custom Affymetrix
genome‐wide platform, called the Axiom CORECT Set,
was used including about 1.3 million SNPs with
insertions and deletions (indels) on two physical geno-
typing chips (pegs) (Schumacher et al., 2015).

We conducted quality control on both “per‐indivi-
dual” and “per‐marker” basis to maximize the number
of markers remaining in the study (Anderson et al.,
2010). In per‐individual quality control, individuals with
discordant sex information were identified, the sex
chromosome was removed, and individuals with ele-
vated missing data rates or outlying heterozygosity rate
were identified. Per‐marker quality control consisted of
removing substandard SNPs and identifying SNPs with a
significantly different (p < 0.00001) missing data rate
between cases and controls. Finally, dependent SNPs
were identified and pruned (i.e., linkage disequilibrium
pruning with correlation coefficient r > 0.62 , linkage
disequilibrium window size 2,000, and step size 200),
and we removed all SNPs that their genotype for at least
1% of the individuals is missing. Regarding the rest of
missing genotypes, a frequency‐based method was used,
in which any missing value of an individual was filled
with the most common genotype of the corresponding
SNP in the population (Hu et al., 2011). After quality
control and linkage disequilibrium pruning, the pre-
processed data set included 190,142 SNPs from 626 cases
and 472 controls. Then, by removing SNPs with at least
1% missing individuals, 185,180 SNPs left from 1,098
individuals.
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2.2 | Filtering

Because analyzing such a large data set with many
thousands SNPs for interactions is impractical in terms of
computational cost, we decided to apply feature selection
or filtering techniques to reduce the number of SNPs to
about 10,000. Because in filtering we are interested in
selecting SNPs with strong interactions to construct the
network, we decided to choose Relief‐based algorithms
which are also fast and flexible. In general, Relief‐based
algorithms are filtering methods to reduce the number of
features in the data set by assigning scores to individual
features based on their discriminant power. They are only
filter methods known with the ability to detect feature
dependencies without an exhaustive examination of all
feature combinations (Urbanowicz, Meeker, Cava, Olson,
& Moore, 2018; Urbanowicz, Olson, Schmitt, Meeker, &
Moore, 2018).

ReliefF (Kira & Rendell, 1992) is a well‐know filtering
method that assigns a weight to each SNP representing
the relevance of the SNP to the disease status, where
weights are estimated using genetically similar indivi-
duals. In fact, for any individual r , the nearest neighbors
are found and, depending on their disease status (i.e.,
case or control), are separated in two groups of hit (i.e.,
the same status as r) and miss (i.e., different status
than r). Then, the weight of SNPs is increased with
respect to the distance between r and miss members
(i.e., such SNPs are more predictive of the disease), and is
decreased in terms of the distance between r and hit
members (i.e., they are less predictive of the disease).

The difference of two individuals Ri and Rj regarding
SNP a is measured as

⎧⎨⎩

a R R
a R a R

diff( , , )

= 0 genetype( , ) = genotype( , )
1 otherwise,

i j

i j

and the distance between two individuals can be
calculated as

∑∀ ∈R R a R Rdist( , ) = diff( , , ),i j
a A

i j

where A denotes the set of all SNPs. Thus, the nearest
neighbor of each individual is an individual with the
most number of SNPS of the same genotype.

Spatially uniform ReliefF (SURF) (Greene, Penrod,
Kiralis, & Moore, 2009) is an extension of ReliefF that,
instead of choosing a constant number of nearest
neighbors, selects all neighbors within a fixed distance
T of the individual. Furthermore, it has been recom-
mended to apply an iterative Relief approach such as

tuned ReliefF (TURF) in large feature space with more
than 10,000 features (Urbanowicz et al., 2018). TURF
algorithm (Moore & White, 2007) improves the perfor-
mance of ReliefF by running it several times. To re‐
estimate the weight and relevance of remaining SNPs
more accurately, each time TURF removes noisy SNPs
that have the lowest weight values. The combination of
TURF with both SURF and ReliefF has shown promising
results regarding finding the SNPs with the strongest
pairwise interactions (Dorani & Hu, 2018).

To choose between SURF and ReliefF, we implemen-
ted the combination of TURF and each of them, scored
SNPs by them, selected about top 10,000 SNPs and
calculated the distribution of pairwise information gain
(Cover & Thomas, 2006) for SNPs selected by each.
Because we were looking for SNPs with stronger
interactions, and the result showed that the pairwise
interaction in the SNPs selected by TURF+ SURF were
stronger than those selected by TURF+ReliefF,
the combination of TURF and SURF, with the pseudo-
code shown in Figure 1, was applied to choose the top
SNPs. After filtering, the data set used in network
construction and our analysis consisted of 9,996 SNPs
from 626 CRC cases and 472 controls.

2.3 | Pairwise interaction
quantification

We measured the strength of the interaction between any
pair of SNPs in terms of information gain (IG) (Andrew
et al., 2012; Fan et al., 2011; Hu et al., 2013b, 2013b;

FIGURE 1 The implementation of TURF + SURF. A and R
denote the set of SNPs (i.e., attributes) and individuals,
respectively. snp_th represents the maximum number of SNPs
supposed to be kept after filtering, T is the mean distance between
all individuals considered as the threshold to find nearby
individuals, ph(x) returns the phenotype of individual x (i.e., case
or control), and pr denotes the percentage of SNPs removed at each
iteration of TURF. SNP: single‐nucleotide polymorphism; SURF:
spatially uniform ReliefF; TURF: tuned ReliefF
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Moore & Hu, 2015; Pan et al., 2014). This metric
quantifies the amount of the disease status that the
epistatic effect of the corresponding genotype pair
represents. The IG between SNPs A and B with class
variable C, denoting status case or control, can be
measured as:

A B C I A B C I A C I B CIG( , ; ) = ( , ; ) − ( ; ) − ( ; ), (1)

where I A C( ; ) denotes the mutual information of SNP
A’s genotype and the disease status C, that is, the main
effect of A on C, and I A B C( , ; ) measures the explana-
tion of C by combining A and B. Thus, A B CIG( , ; )
captures the synergistic, non‐additive effect between A
and B on explaining C. Mutual information I A C( ; ) can
be calculated as follows.

∣I A C H C H C A( ; ) = ( ) − ( ), (2)

where ∑H C p c log( ) = ( ) ×c p c
1
( ) is the entropy of∣ ∑C H C A p a c, ( ) = ( , ) × loga c
p a

p a c,
( )

( , ) is the conditional
entropy of C given knowledge of SNP A p c, ( ) is the
probability that an individual has class c p a, ( ) is the
frequency of individuals with genotype a, and p a c( , ) is
the frequency of individuals in either the case or the
control group that carry genotype a.

2.4 | Epistasis network construction

A network or graph G is defined as a set of vertices
V G v v v( ) = { , , ..., }n1 2 , where ∣ ∣V G( ) denotes the number
of vertices in the network, and a set of edges E G( ), that
its members are two‐element subsets of V (West, 2001). In
our epistasis network, each SNP is represented by a
vertex, and the edges demonstrate the interactions among
pairs of SNPs measured in terms of pairwise IG. Because
IG measures the amount of the disease status explained
by the corresponding genotype pair interaction for each
edge, a stronger effect from the interaction between two
SNPs translates into a higher weight of their correspond-
ing edge into the network.

To assess the significance of the strength of these
SNP pairwise interactions (i.e., IG values), we gener-
ated 1,000 permutations of the CRC GWAS data set by
randomly shuffling the disease status and assigning
them to the samples to remove the association between
genotypes and phenotype. Then, the pairwise IG values
for the SNPs in all permuted datasets were similarly
measured, and the significance p‐value of IG of SNP
pairs in real data set was evaluated using the null
hypothesis of no association between the genotypes
and the phenotype.

In the final constructed epistasis network, we defined
an edge between two vertices if (a) the calculated
pairwise IG between the corresponding SNPs was greater
than a threshold (IG‐cut‐off), and (b) its p‐value, drawn
from permutation test, was less than or equal to 0.01. To
decide on the optimal threshold of IG, we used several
IG‐cut‐off values (from the highest observed in the data
set decremented by 0.001) to construct a network and
observed the change of different features like the number
of vertices, the number of edges, and the size of the
largest connected component. Obviously, a network
constructed based on a smaller threshold always includes
all vertices and edges of the one based on a larger
threshold. We decreased IG‐cut‐off gradually until a
dominant connected component (i.e., a connected
component with the majority of vertices) appeared in
the network. Therefore, with this cutoff, we included the
majority of the SNPs and their strongest and most
significant pairwise interactions for the subsequent
network analyses.

2.5 | Ranking SNPs in the epistasis
network

After constructing our epistasis network, represented as a
weighted and undirected graph, we analyzed it based on
several global and local network properties. The defini-
tion of all these properties has been presented in Section
S1. We also found motifs (Milo et al., 2002; Shen‐Orr,
Milo, Mangan, & Alon, 2002) representing particular
patterns at which SNPs interact with each other in a
more frequent and meaningful way in comparison to a
random network. Furthermore, we found small con-
nected non‐isomorphic induced subgraphs of our net-
work, called graphlets (Pržulj, Corneil, & Jurisica, 2004;
Pržulj, 2006), and their orbits representing different
distinct positions of vertices in a graphlet. Based on
these analytical findings, we used the following three
important local properties of the vertices to rank SNPs
based on their topological importance in our epistasis
network and chose top SNPs with potential high disease
association: (a) SNP pairwise interaction strength, that is,
IG, (b) vertex centrality measures, and (c) appearances of
SNPs at different orbits of graphlets.

3 | RESULTS

3.1 | Statistical epistasis network
of CRC

As discussed in Section 2.4, by decreasing IG‐cut‐off
value from 0.02 with a decrement of 0.001, we were
looking for the threshold at which the dominant
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connected component appears. As shown in Table 1,
from IG‐cut‐off = 0.02 to IG‐cut‐off = 0.015, the size of
the largest connected component is very small in
comparison to the total number of vertices, and SNPs
are connected in small groups. However, at IG‐cut‐
off = 0.014, the majority of the SNPs (~57%) are
connected to each other (3,244 out of 5,683 SNPs) with
5,006 edges while more than half of SNPs are non‐
isolated vertices (5,683 out of 9,996 SNPs). Then, at IG‐
cut‐off = 0.013, the number of vertices and edges grow to
7,950 and 10,720, respectively with more than 94% of the
nodes in the largest connected component (7,504 SNPs).
At IG‐cut‐off = 0.011 and after that the network is fully
connected (i.e., the largest connected component in-
cludes all vertices and the network consists of one single
connected component), and IG‐cut‐off = 0.009 is the
point that finally all 9,996 SNPs are attached to the
network. Based on these results, we chose IG‐cut‐
off = 0.014 as the threshold to pick the edges and
construct our epistasis network to include the majority
of the SNPs with a minimal set of the strongest and the
most significant pairwise interactions.

Because IG measured between two SNPs represents
how much this SNP pair’s interaction effect is associated
with the disease, we chose IG as a metric to find SNP
pairs with the strongest interaction. In fact, we calculated
the mean (µ) and the standard deviation (σ) for all
pairwise IG values, and selected SNP pairs with their IG
values greater than µ σ+ 3 . Table S3 presents the list of
top SNP pairs with the highest IG values along with their
associated genes extracted from NCBI1.

3.2 | Global properties of the network

With the derived thresholds of IG > 0.014 and ≤p 0.01,
our CRC epistasis network consisted of 5,683 vertices and
5,006 edges. Each vertex denotes a SNP and each edge
represents a strong and significant interaction between
the corresponding endpoint SNPs in terms of IG. Table 2
summarizes the basic parameters of the network.

• Degree distribution and connected components: In our
network, each vertex has a degree between 1 and 8 with
average 1.762 neighbors per vertex. Based on the degree
distribution shown in Figure 2, the majority of SNPs
interact only with one other SNP while there are a
small number of hubs interacting with eight other SNPs
directly. In addition, the largest connected component
in our network included 3,244 vertices and other

vertices grouped in significantly small connected
components of 2–36 vertices, as shown in Figure S1.

• Shortest path and diameter: Based on small‐world
effect, the average path length in networks typically
scale as ∣ ∣V Glog ( ) (Newman, 2010), and because of the
slow‐growing of logarithm function in terms of its
argument, the value of average path length usually
remains small even for large networks. However, for
our epistasis network, the average path length equals
20.996, which is significantly larger than
log(5681) = 3.75. Figure S2 presents the distribution
of the shortest path length in the network. In addition,
the diameter was measured as 58 for our network.

• Assortativity coefficient: The calculated assortativity
coefficient for our network is about −0.044, which
classify it as a “disassortative mixing” network. It
means that in our network, there is a tendency for
high‐degree SNPs to be attached to low‐degree ones. As
explained in (Newman, 2002), the technological and
biological networks studied like Internet, World Wide
Web, protein interactions, neural network, and food
web all have disassortative mixing, high‐degree vertices
preferentially connect with low‐degree ones and vice
versa. In general, it has been proven that disassortative
networks percolate harder and the giant connected
component will appear slower at them. Also, they are
more vulnerable in case of attack to the high‐degree
nodes (i.e., hubs) because these hubs are distributed

TABLE 1 The comparison of networks constructed based on
various IG‐cut‐off values. Note that while at larger IG‐cut‐off values
most of vertices were either isolated or in small groups, by
decreasing the IG‐cut‐off value the network grew, more vertices
were connected, and finally, at IG‐cut‐off = 0.014 the dominant
connected component emerged

IG‐cut‐off
Number of
vertices

Number of
edges

Size of
the LCC

0.020 118 60 3

0.019 276 140 3

0.018 536 277 3

0.017 1050 568 5

0.016 1975 1152 8

0.015 3518 2392 25

0.014 5683 5006 3244

0.013 7951 10724 7505

0.012 9319 22532 9273

0.011 9827 47329 9827

0.010 9979 99668 9979

0.009 9996 197300 9996

0.008 9996 327353 9996

Note. IG: information gain; LCC: largest connected component.1https://www.ncbi.nlm.nih.gov/snp
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broadly across the network linking low‐degree nodes
and parts of the network (Barabási, 2016; Newman,
2002). To measure the significance of the calculated
value, we performed a set of significance tests in which
the assortativity coefficient for 1,000 permuted net-
works was calculated. These permuted networks had
the same number of vertices and edges as our network;
however, their neighborhood structure is permuted by
swapping edges ∣ ∣E G10 × ( ) times (Hu, Andrew,
Karagas, & Moore, 2013a). Every time, two edges, ei j,
and eh k, , are chosen randomly and given that there is no
edge between the endpoints of these two edges (i.e.,∉e e E G, ( )i k h j, , ), the endpoints are swapped such that
the edges ei j, and eh k, in the network are replaced with
the edges ei k, and eh j, . The results showed that only one

random network (out of 1,000 random networks) had
assortativity coefficient equal to or less than that of our
network, that is, p = 0.001, which shows the strength
of disassortative mixing in our epistasis network. Table
S1 summarizes assortativity coefficient measured for
the networks constructed by different IG‐cut‐off values
and p‐values measured by generating 1,000 random
networks as explained here.

• Clustering coefficient: Surprisingly the value of cluster-
ing coefficient for our network is 0; meaning that there
is no triangle in the network or the neighbors of a
vertex are never neighbor themselves. As discussed in
Newman, 2010, the expected clustering coefficient for a
network with given number of vertices and degree
distribution but with random connections between
vertices can be calculated as

∣ ∣ 〈 〉 〈 〉〈 〉E
V G

k k
k

(clustering‐coefficient) = 1
( )

[ − ] ,
2 2

3

(3)

where k< > denotes the mean of the degree distribution
and k< >2 is the mean for the square of the degrees (i.e.,
second moment). While the clustering coefficient of our
network is 0, its expected value equals 0.0002. Table S2
summarizes the clustering coefficient measured for the
networks constructed by different IG‐cut‐off values, their
expected clustering coefficient using (3) and p‐value
measured by generating 1,000 random networks as
explained for assortativity coefficient.
• K ‐core components: While k = 1 represents all con-
nected components in the network that are 761
components, for k = 2 we found only one component
consisted of 658 vertices that each is connected to at
least two other vertices of the component. However,
our network does not show a dense core because the
k‐core does not go beyond k = 2, meaning that there
exists no subset of vertices in which each of them is
connected to at least three other vertices.

3.3 | Local properties of the network

Apart from global properties, local properties concern
individual vertices and their nearby neighborhood.

• Motifs and graphlets: We used FANMOD (Wernicke &
Rasche, 2006) to find the frequent patterns of our
network with up to eight vertices, and the extracted
motifs are shown in Figure 3. Furthermore, the
graphlets found in our network with 3–5 vertices are
shown in Figure 4. The results prove that in our
network there is no loop with the length of 5 or less. We

TABLE 2 Basic parameters of our epistasis network, where
each edge represents an IG value >0.014 between its endpoints
(and ≤p 0.01)

Parameter Value

Number of vertices 5683

Number of Edges 5006

Clustering coefficient 0

Number of connected components 761

Network diameter 58

Average path length 20.9957433

Average number of neighbors 1.761

Assortativity coefficient −0.043694176

Note. IG: information gain.

FIGURE 2 The degree distribution of our epistasis network.
The degree distribution of our network does not show a heavy‐tail
degree distribution as in scale‐free networks
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used ORCA (Hočevar & Demšar, 2014) to count the
number of times that each SNP appears in different
orbits across all graphlets, and generated table snp_or-
bit (number of SNPs × number of orbits), where
snp_orbit i j( , ) denotes the number of occurrences of
SNP i at orbit j. Then, for each orbit, we selected 50
SNPs with the highest occurrences at the given orbit.
We noticed that from 73 possible orbits described in
(Pržulj, 2006), only 16 orbits are available in the
structure of our network. In addition, most selected
SNPs are common among the list of top SNPs of several
orbits. The list of these 146 SNPs, as well as their
associated genes and the list of orbits for which the SNP
was chosen (i.e., was ranked among 50 top SNPs), have
been summarized in Table S5.

• Centrality measures: To find the vertices that are more
important or more “central,” we measured several
centrality metrics such as degree, closeness, and between-
ness centrality and page rank for all vertices of the
network. Degree centrality is one of the features to identify
the most influential nodes, and it is usually reasonable to
assume that SNPs with more and stronger connections
(i.e., hubs) may have more influence than those who have
fewer and weaker connections (Albert & Barabási, 2002;
Bonacich, 1972). Furthermore, the vertices with high
betweenness are usually connecting two parts of the
network and are seen as the bottlenecks of information
flow (Barabasi, Gulbahce, & Loscalzo, 2011; De, Hu,
Moore, & Gilbert‐Diamond, 2015). To take into account

the effect of the pairwise IG calculated for SNPs, we here
only discuss the weighted centrality metrics. The histo-
grams of all centrality metrics calculated for our network
are shown in Figure 5. We calculated the pairwise
correlation between centrality metrics measured for
vertices of our network. As expected and shown in
Figure 5, it represents a strong correlation between
weighted page rank and weighted degree centrality. Then,
we found outlier SNPs that have high ranks by multiple
centrality measures. In fact, we ranked SNPs based on each
of four centrality measures, separately. Then, for each SNP,
we calculated the sum of its ranks for all four metrics
(called aggregated rank), and then sorted SNPs in
ascending order of their aggregated rank. We calculated
the mean (µ) and the standard deviation (σ) of aggregated

FIGURE 3 The motifs extracted by
FANMOD with (a) four, (b‐c) five, (d‐f)
six, (g‐i) seven, and (j‐k) eight vertices.
The tool did not find any motif with three
vertices

FIGURE 4 The graphlets extracted by ORCA with (a) three,
(b‐c) four, and (d‐f) five vertices. There are 29 possible graphlets,
with three to five vertices, and our network contains only six
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rank across all SNPs, and selected the SNPs that their
aggregated rank was <µ σ− 2 . Table S7 represents these
top SNPs and their corresponding genes. We noticed that
while the majority of the best SNPs are in the largest
connected component, a few are not. All top SNPs that are
not in the largest connected component have high
weighted page rank and weighted degree centrality but
the low closeness and betweenness centralities. In fact, due
to the way that we measured closeness and betweenness
centrality, these metrics will be larger for the nodes in the
largest connected component in comparison to those
which are in other (very small) components. For example
for closeness centrality, the existence of a path to any other
node can increase the value of the metric; hence more
vertices available in the largest connected component can
contribute to a higher closeness centrality value for the

vertices of the largest connected component. Figure S3
shows the topology of the components of the top SNPs not
in the largest connected component. We used Cytoscape
(Shannon et al., 2003) to visualize these structures, and in
each topology, the yellow vertex represents the SNP which
was in the list of high‐rank SNPs.

3.4 | Top SNPs based on different
metrics

As discussed before, we selected top SNPs based on
three different criteria. (a) The highest pairwise IG, (b)
most occurrences at different orbits of graphlets, and
(c) the highest value of centrality measures. We also
found the list of associated genes for the SNPs selected

FIGURE 5 The pairwise correlation between different weighted degree centrality, weighted closeness centrality, weighted betweenness
centrality, and weighted page rank as well as their histogram

8 | KAFAIE ET AL.



by each criterion; 153, 155, and 80 genes for criterion 1,
2, and 3, respectively. Figure 6 shows the number of top
SNPs extracted from coding regions and noncoding
regions based on the three metrics as well as the Venn
diagrams representing the number of common coding
SNPs, noncoding SNPs and genes selected based on the
metrics. The list of top SNPs and their corresponding
genes, chosen by at least two (of the three) criteria, is
summarized in Table 3. Also, the lists of top SNPs
extracted from noncoding regions which have been
enriched as Expression quantitative trait loci (eQTLs).2

for IG, graphlet and centrality metrics have been
provided in Tables S4, S6, and S8, respectively.
Furthermore, Figure 7 presents a network of the two‐
hop neighborhood of these 25 top SNPs. While in our
epistasis network, all these top SNPs are in the largest
connected component, as can be seen in Figure 7, the
top SNPs here are separated into 12 different connected
components. In fact, there exist nine components with
only one top SNP, meaning that these top SNPs are not
connected to any other top SNP in up to 5‐hop
neighborhood.

3.4.1 | Validating the significance of
selected top SNPs

To further validate the significance of these selected SNPs
regarding the disease, we developed machine learning
models to measure the accuracy of disease prediction using
the top SNPs. In fact, we trained four models based on
logistic regression with stochastic gradient descent,
K ‐nearest neighbors, support vector machine, and random
forests using 50 top SNPs as the explanatory features. These
top SNPs were selected based on each of our suggested
metrics individually as well as their combination, called
Union. To compare the results, we also selected 50 top SNPs
based on TURF+ SURF filtering approach, explained in
Section 2.2, and allelic odds ratio (Clarke et al., 2011),
explained in Section S1. Each classification model was
trained using 90% of the data set, while a k‐fold cross‐
validation with random search was used to select
hyperparameters of the model. Then, we measured the
accuracy of predicting disease in the test set (the other 10%
of the data set). This process was repeated 10 times for each
metric and model, and the average accuracy calculated for
different metrics in the models has been shown in Figure 8.

FIGURE 6 (a) The number of top SNPs extracted from coding and noncoding regions based on IG, graphlets and centrality measures.
(b–d) Venn diagram for three different criteria (IG, graphlet and centrality) representing the number of (b) SNPs in coding region, (c) SNPs
from noncoding region, and (d) genes
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As shown in Figure 8, the SNPs selected based on
the combination of our three suggested metrics (i.e.,
Union) predict the disease with higher accuracy than
the SNPs selected by other metrics in almost all
models. Furthermore, while in SVM model the
performance of TURF + SURF and Odds ratio is very
close to Union, in other models, Union outperforms
them significantly. Interestingly, in KNN model, the
performance of both TURF+SURF and Odds ratio is
even worse than that of each of our suggested metrics
individually. Also, these results show that Centrality
is more promising in identifying key SNPs than IG
and graphlet, and in SVM its performance is even close
to Union.

3.4.2 | Main versus interaction effects of
the top SNPs

One of the advantages of using IG to calculate pairwise
interactions among SNPs is that it is able to exclude
individual main effect of SNPs in calculation of higher‐
order interaction effects. To verify that, we have
calculated the main effect of all top SNPs chosen by
our three criteria and found their rank among all SNPs
selected for network construction (n = 9996). This
ranking can be found as column “Main effect rank” in
Tables S3, S5, and S7. Furthermore, we have selected 100
top SNPs chosen based on our three metrics and found
their main effect ranking among all SNPs selected for
network construction after filtering (n= 9,996). Table 4
presents the number of SNPs (of these top 100 SNPs)
selected based on our three different criteria (i.e., IG,
graphlet, and centrality) that are among top 1%, 5%, 10%,
and 50% SNPs ranked based on the main effect. As can be
seen in this table, only a small fraction of our top SNPs
are among SNPs with high main effect, which can
indicate that IG, used here to construct the network
and create the edges, is able to exclude the main effect
in measuring pairwise interactions (as shown in
Equation (1)), and capture the cases with only high
pairwise interactions.

4 | DISCUSSION

To identify the synergistic effect of multiple genes on
phenotypic status, we studied the interaction of SNPs in
CRC. Our data set included 265,195 SNPs from 656 cases
and 496 controls. After applying quality control, data
imputation and filtering, by calculating the pairwise IG
between remained 9,996 SNPs, we constructed our
epistasis network, where an edge links two SNPs if IG
associated with its endpoints is significantly ( ≤p 0.01)
greater than a given threshold. We started from the
highest measured IG as the threshold, and kept decreas-
ing the value until a giant connected component
appeared in the network at IG‐cut‐off = 0.014. The final
epistasis network consisted of 5,683 SNPs as the vertices
and 5,006 edges, and we analyzed several global and local
properties of the network.

In our network, the vertex degree does not go beyond
8, and most SNPs interact only with at most a couple of
other SNPs. Also, the average path length is significantly
greater than the expected value based on small‐world
effect, and with high significance (p = 0.001), it is a
disassortative mixing network in which high‐degree SNPs
tend to attach to low‐degree ones. All these findings as
well as the facts that our network’s clustering coefficient

TABLE 3 Top SNPs chosen based on at least two of the
following three criteria: (a) The highest pairwise IG, (b) most
occurrences at different orbits of graphlets, and (c) the highest
value of vertex centrality measures

SNP Gene Criteria

rs6983378 COL22A1 IG, graphlet, centrality

rs7012042 COL22A1 IG, centrality

rs1160595 NRXN1 IG, graphlet

rs12493550 HTR3D IG, graphlet

rs3793695 CRTAC1 IG, graphlet

rs6854489 LOC105377448 IG, graphlet

rs11757878 ‐ IG, graphlet

rs10071657 LOC101929710 IG, centrality

rs751150 MYT1L IG, centrality

rs16841104 RGS7 IG, centrality

rs3851997 CPNE4 IG, centrality

rs3826616 SERPINB8 IG, centrality

rs9430004 CAMK1G IG, centrality

rs835484 CHST11 IG, centrality

rs6716943 LOC105373962 IG, centrality

rs13107574 – IG, centrality

rs7160402 – IG, centrality

rs1890629 – IG, centrality

rs2907639 – IG, centrality

rs7628760 – IG, centrality

rs1381574 – IG, centrality

rs1978153 ABCC3 Graphlet, centrality

rs9310213 FOXP1 Graphlet, centrality

rs6743932 – Graphlet, centrality

rs10829973 – Graphlet, centrality

Note. IG: information gain.

2eQTL is a locus that explains a fraction of the genetic variance of a gene expression phenotype

(Nica & Dermitzakis, 2013).
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is 0, and there is no k‐core component with k > 2,
confirms that it has a sparse and tree‐like structure in
which most SNPs interact with at most 2 other SNPs to
create chain or star shape.

In addition, to identify important vertices, we
computed several centrality measures for the vertices in
the network. It is found that hubs (i.e., vertices with high‐
degree centrality), as well as bottlenecks (i.e., the vertices

FIGURE 7 The network of all top SNPs chosen based on at least two of the three criteria and their two‐hop neighborhood. Top SNPs are
highlighted in gray. This network consists of 299 vertices connected by 287 edges in 12 separate connected components

FIGURE 8 The accuracy of disease prediction using four machine learning models, namely logistic regression with SGD, KNN, SVM,
and random forest, using 50 top SNPs as features chosen based on IG, centrality, graphlet, Union (IG + centrality + graphlet), SURF+TURF,
and allelic odds ratio. IG: information gain; KNN: K‐nearest neighbors; SGD: stochastic gradient descent; SNP: single‐nucleotide
polymorphism; SURF: spatially uniform ReliefF; SVM: support vector machine; TURF: tuned ReliefF
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with high betweenness centrality) within a protein
interaction network, are often encoded by essential genes
in model organisms (De et al., 2015; Jeong, Mason,
Barabási, & Oltvai, 2001; Yu, Kim, Sprecher, Trifonov, &
Gerstein, 2007). Furthermore, in networks such as
metabolic networks and statistical epistasis networks,
closeness centrality has been used to highlight central
vertices (Ma & Zeng, 2003; De et al., 2015). We also found
motifs with less than nine vertices and graphlets with up
to five vertices in our epistasis network. Based on
calculated clustering coefficient and found k‐core com-
ponents, motifs, and graphlets, we could not identify any
cycle in the network. We are not sure about the biological
mechanism and reasoning behind this long path length
and the tree‐like structure of our epistasis network.
However, this is an interesting observation, which can be
further investigated in future studies.

Moreover, as explained in Section 3.4, we selected top
SNPs based on IG value, graphlets, and centrality
measures, and found their corresponding gene lists.
COL22A1, RGS7, WWOX, and CELF2 were four genes
selected based on all three metrics. RGS7 has been
identified as a tumor‐suppressor gene resulting in the
invasion of human cancer cells (Aissani, Wiener, &
Zhang, 2013; Qutob et al., 2018). Żelazowski et al. (2011)
studied the correlation of WWOX gene expression in
CRC patients and proved the tumor‐suppressive role of
WWOX gene expression in the colon. Also, it has been
observed that CELF2 levels are reduced in colon tumor
tissue compared to normal ones suggesting CELF2 as a
potential tumor‐suppressor gene that Ramalingam, Ra-
mamoorthy, Subramaniam, and Anant (2012) believe it
might play a crucial role in tumor initiation and
progression. Furthermore, among other top genes chosen
based on our metrics, studies showed that MTHFD1L is
over‐expressed in colorectal and breast cancers (Jain
et al., 2012; Sugiura, Nagano, Inoue, & Hirotani, 2004),
and plays an essential role in support of cancer growth
(Lee et al., 2017). In addition, NRXN1 has been identified
as one of the genes associated with CRC filtered out by

the KEGG (Kyoto Encyclopedia of Genes and Genomes)
analysis (Yang, Feng, Ma, Li, & Xie, 2017) and one of
significantly down‐regulated genes in cancer stroma
(Nishida et al., 2012), and its frequent genetic, epigenetic,
and transcriptional alterations were identified in Later-
ally spreading tumors (LSTs; Hesson et al., 2016).

In summary, we constructed a network consisting of a
significant number of SNPs, and utilized several network
properties to highlight a few key SNPs and genes with
potential high disease/phenotype association. While the
influence of some of these selected genes on CRC has
already been proved in literature, the effect of the rest can
be validated by further biological studies. Annotation of
these important genes can help classify diseases more
accurately and develop more efficient drugs. It can also
contribute to identifying people with high cancer risk and
providing more effective and timely diagnosis, treatment,
and even prevention for the diseases.

For future studies, we expect (a) to analyze other CRC
GWAS data and see if our results can be replicated,
although considering that the replication might be
challenging given the reason of the geographical isolation
in Newfoundland, and the resulting low diversity and
unique genetic background captured in the data used in
this study; and (b) to apply our analysis framework to
GWAS data on other diseases.
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