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Abstract

Though additive forms of heritability are primarily studied in genetics,

nonlinear, non‐additive gene–gene interactions, that is, epistasis, could

explain a portion of the missing heritability in complex human diseases

including cancer. In recent years, powerful computational methods have

been introduced to understand multivariable genetic factors of these

complex human diseases in extremely high‐dimensional genome‐wide

data. In this study, we investigated the performance of three powerful

methods, BOolean Operation‐based Screening and Testing (BOOST),

FastEpistasis, and Tree‐based Epistasis Association Mapping (TEAM) to

identify interacting genetic risk factors of colorectal cancer (CRC) for

genome‐wide association studies (GWAS). After quality‐control based

data preprocessing, we applied these three algorithms to a CRC GWAS

data set, and selected the top‐ranked 100 single‐nucleotide polymorphism

(SNP) pairs identified by each method (251 SNPs in total), among which

74 pairs were common between FastEpistasis and BOOST. The identified

SNPs by BOOST, FastEpistasis, and TEAM mapped to 58, 57, and 62

genes, respectively. Some genes highlighted by our study, including

MACF1, USP49, SMAD2, SMAD3, TGFBR1, and RHOA, have been de-

tected in previous CRC‐related research. We also identified some new

genes with potential biological relevance to CRC such as CCDC32. Fur-

thermore, we constructed the network of these top SNP pairs for three

methods, and the patterns identified in the networks show that some SNPs

including rs2412531, rs349699, and rs17142011 play a crucial role in the

classification of disease status in our study.
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1 | INTRODUCTION

For genome‐wide association studies (GWAS), the most
common objective is to identify genetic regions (loci) and
their associated phenotypic traits (including diseases). In
recent years, successes have been reported in using GWAS to
identify genetic variations that contribute to the risk of
prostate cancer (Eeles et al., 2013), Parkinson's disease
(Martins et al., 2011), type 2 diabetes (Billings & Florez,
2010), obesity (Loos & Yeo, 2014), Crohn's disease (Franke
et al., 2010), and heart disorders (DenHoed et al., 2013).

In fact, a series of statistical and computational methods
have been developed so far to provide insights into genetic
variants associated with complex diseases. However, many
studies apply the uni‐variable approach, where a single
genetic variant is being scored and ranked based on the
significance of its association with the disease phenotype,
mostly due to the extremely high dimensionality of GWAS
data which could include up to a million variables. These
initial GWAS analyses, that have adopted single‐nucleotide
polymorphism (SNP)‐based methods, provide stepping
stones for further exploration, but usually have fallen short
for discovering new variants explaining disease heritability
effectively (Manolio et al., 2009; Szymczak et al., 2009).

Recent research has seen a trend of developing new
algorithms for detecting gene–gene interactions rather
than focusing only on the single‐locus contribution to
phenotypic variations. The nonlinear, non‐additive
gene–gene interaction, also called epistasis, is considered
to account for some of the missing heritability, which is
ignored and unaccounted for in uni‐variable approaches
(Collins et al., 2013; Cordell, 2002; Dorani et al., 2018; Hu,
Chen, Kiralis, Collins, et al., 2013; Hu, Chen, Kiralis, &
Moore, 2013; Hu et al., 2011; Kafaie et al., 2019; Moore,
2003; Raghavan & Tosto, 2017; Schubert et al., 2019). The
multivariable methods attempt to analyze all possible SNP
combinations of various degrees and capture the most
significant contributing ones. However, traditional para-
metric statistical methods such as linear and logistic re-
gression cannot be easily applied to epistasis detection
because of the sparseness of GWAS data in extreme high
dimensions. Also, the burden of high computational cost
adds to the difficulty of developing powerful epistasis de-
tection algorithms (Manduchi et al., 2018).

To detect gene–gene interactions, in this study, we in-
vestigated three algorithms, BOolean Operation‐based
Screening and Testing (BOOST) (Wan et al., 2010), FastE-
pistasis (Schüpbach et al., 2010), and Tree‐based Epistasis
Association Mapping (TEAM) (Zhang et al., 2010). We ap-
plied these three powerful algorithms to identify interacting
genetic risk factors of colorectal cancer (CRC), which is the
third most common cancer globally (Jemal et al., 2011), and
caused more than 50,000 deaths in the United States alone in

2018 (Siegel et al., 2018). Previous GWAS have identified one
SNP (rs6983267) at 8q24.21 (p = 1.72 × 10−7, allelic test)
(Tomlinson et al., 2007) and three SNPs in SMAD7 (involved
in TGF‐β and Wnt signaling) strongly associated with CRC
(Broderick et al., 2007).

In our study, the GWAS data set was collected from
the population in the Canadian province of New-
foundland and Labrador. All three algorithms were
able to rank two‐way SNP interactions based on their
association with the disease, and identified 251 SNPs,
in total, among two‐way interaction pairs as having the
most significant impact. The functional enrichment
analysis on protein products produced by the identified
SNPs also indicated significant biological pathways for
future references.

2 | METHODOLOGY

2.1 | Overview

Figure 1 shows the flow of data pre‐processing and data
analyzing procedures. The first step was to filter out in-
adequate markers and samples within the original data
set; hence the original data set containing 265,181 SNPs
and 1352 samples was preprocessed into a clean data set of
253,657 SNPs and 1060 samples. Then, we applied the
three algorithms, BOOST, FastEpistasis, and TEAM, to the
preprocessed data set, and performed functional enrich-
ment analysis on the identified SNP pairs using the tool
Database for Annotation, Visualization and Integrated
Discovery (DAVID) (Jiao et al., 2012).

2.2 | CRC GWAS data preprocessing

The case–control data set used in our study was sampled
from the population in the province of Newfoundland
and Labrador, Canada. The Colorectal Transdisciplinary
(CORECT) Study coordinated the sampling of the
aforementioned data set. It has been ensured that CRC
patients and healthy participants share statistically si-
milar geographical, sex, and age compositions. The data
set was acquired by genotyping two pegs with a custom
Affymetrix genome‐wide platform (the Axiom CORECT
set). It contained 265,181 SNPs and 1352 samples without
duplicates, among which 856 were cases and 496 were
controls (811 males and 541 females). To extract the most
amount of information from and facilitate subsequent
processing of the data set, PLINK (Purcell et al., 2007), a
whole genome data analysis toolset, was used.

The next two steps were per‐individual and per‐marker
quality control (QC) procedures. During the per‐individual
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QC phase, the following groups of individuals were identi-
fied: 13 samples with discordant sex information, 24 samples
with outlying heterozygosity rate (±3× SD), 3 samples with
elevated missing genotype data rate (≥0.03), 230 duplicated
or related samples with IBD1 >0.185, and 53 samples of
divergent ancestry with a second principal component score
less than 0.072 through principal component analysis. Dur-
ing the per‐individual QC phase, 292 individuals failed to
pass the above filters.

During the per‐marker QC phase, the following ca-
tegories of individuals were filtered out: 6,057 sex chro-
mosome SNPs, 174 SNPs with a missing data rate over
3%, 3782 SNPs with different genotype call rates between
cases and controls, 168 SNPs with Hardy–Weinberg
equilibrium values greater than 0.00001, and 1343 SNPs
with minor allele frequencies (MAFs) less than 5%. In
total, 11,524 SNPs were removed from the data set. Then

missing genotypes were imputed in proportion to the
ratio of dominant alleles against recessive alleles. The
data set after per‐individual and per‐marker quality
control procedures had 253,657 SNPs and 1060 in-
dividuals, among which 603 were cases and 457 were
controls (630 males and 430 females).

2.3 | BOOST, FastEpistasis, and TEAM

The goal of our study is to identify gene–gene interac-
tions from GWAS of the CRC data using the following
three exhaustive search methods and investigate their
performances. A simple but powerful method, named
“BOOST” (Wan et al., 2010), allows examination of all
pairwise interactions in genomic case‐control studies in a
remarkably fast manner. BOOST can be used for the
purpose of discovering unknown gene–gene interactions
that underlie complex diseases, such as CRC. The im-
plementation of the method includes two phases:
screening and testing. During the screening stage, all
pairwise interactions are evaluated by the Kirkwood su-
perposition approximation (KSA) and the significant in-
teractions will be guaranteed to enter the testing phase.
During the testing stage, the classical likelihood ratio test
is employed to measure the interaction effects of selected
SNP pairs.

FastEpistasis is implemented in PLINK (option: fast‐
epistasis) and is used as a fast method to test for inter-
actions (Schüpbach et al., 2010). It is based on a 2 × 2

contingency table of allele counts and tests an SNP pair
for epistasis by comparing their linkage disequilibrium
(LD) in cases and controls.

TEAM is another efficient algorithm which sig-
nificantly speeds up epistasis detection for GWAS (Zhang
et al., 2010). It is an exhaustive method by utilizing the
minimum spanning tree structure to incrementally up-
dates the contingency tables for epistatic tests without
scanning all individuals. The algorithm supports any
statistical tests that makes use of contingency tables;
therefore has broader applicability and is more efficient
than most existing algorithms for GWAS.

We chose these three approaches because (1) BOOST,
FastEpistasis, and TEAM all are well‐known tools for
detecting pairwise interactions that use the exhaustive
search strategy and their packages and manuals are
readily available online; (2) they have been used and
recommended in studies and reviews as powerful and
computationally efficient tools for scanning epistatic in-
teractions on GWAS (Cowman & Koyutürk, 2017; Guo
et al., 2014; Murk & DeWan, 2016; Wang et al., 2011). We
generally set the parameters of these methods as default,
and 100 was chosen as the number of permutations
for TEAM.

FIGURE 1 Flow‐chart for data pre‐processing and data
analyzing procedures. First, the original data set containing 265,181
SNPs and 1352 samples was cleaned up into a preprocessed data set
of 253,657 SNPs and 1060 samples. Next, three exhaustive
algorithms, namely BOOST, FastEpistasis, and TEAM were applied
to the clean data set. Last, we performed functional enrichment
analysis on the three identified SNP sets by the mentioned
algorithms. BOOST, BOolean Operation‐based Screening and
Testing; SNP, single‐nucleotide polymorphism; TEAM, Tree‐based
Epistasis Association Mapping

1IBD (identity by descent) or the degree of recent shared ancestry for a
pair of individuals can be estimated using genome‐wide IBS (identical
by state) data. The expectation is that IBD = 1 for duplicates or
monozygotic twins, IBD = 0.5 for first‐degree relatives, IBD = 0.25 for
second‐degree relatives, and IBD = 0.125 for third‐degree relatives.
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2.4 | Functional enrichment analysis

Utilizing online resources including ENSEMBL2 and the
National Center for Biotechnology Information (NCBI)3 da-
tabases, the identified top ranking SNPs were annotated with
functional information. NCBI and ENSEMBL provide bio-
logical information on the allele, chromosome, and gene
information for each SNP.

Then, a functional enrichment analysis was conducted
on the top‐ranked SNPs discovered in the three gene–gene
interaction detecting algorithms via the Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID)
bioinformatics tool (Jiao et al., 2012).

3 | RESULTS

In this section, we first show the application results of the
three mentioned methods on the CRC GWAS data set and
then the functional annotation chart produced by DAVID.
We also apply machine learning techniques to verify the
significance of top SNPs selected by the methods on pre-
dicting CRC.

3.1 | Top‐ranked 100 SNP pairs

Among the top 100 ranked SNP pairs detected by Fas-
tEpistasis and BOOST, we found 74 common pairs of
SNPs. TEAM‐detected SNP pairs, on the other hand,
were in a separate set, which had no pairs in common
with these of FastEpistasis and BOOST. There were 130,
138, and 80 unique SNPs within the top‐ranked SNP
pairs detected by BOOST, FastEpistasis, and TEAM, re-
spectively (see Figure 1). The similar results from BOOST
and FastEpistasis indicate common factors considered in
the ranking statistics used in both algorithms, whereas
TEAM utilizes a different approach when computing its
own ranking statistics.

Figures 2–4 use network diagrams of SNPs in the top
100 ranked SNP pairs identified by BOOST, FastEpistasis,
and TEAM to illustrate the interconnections and
pairwise‐relationships among the depicted SNPs. 92.3%
of the SNPs identified by BOOST encode protein pro-
ducts, 88.4% by FastEpistasis, and 75% by TEAM.

The two networks of SNPs identified by BOOST and
FastEpistasis showed a similar fragmented structure with
33 and 41 connected components, respectively, and shared
74 pairs of SNPs. Whereas the SNP interaction network

identified by TEAM contained only one giant component
connected through three hub SNPs.

Boost and FastEpistasis networks also shared an SNP
with the most connections to other SNPs, namely
rs2412531, which was found to interact with the same set
of nine SNPs in both networks. In addition, SNP
rs349699 was found to interact with the same set of five
SNPs in both networks. Other common high‐degree
SNPs shared by these two networks include rs6808,
rs122800, rs1487324, and rs349699. Echoing the distinct
structure showed in the TEAM network, its three hub
SNPs, rs17142011, rs6355, and rs2072193 were absent in
the other two networks.

3.2 | Enriched gene functional terms

Each of the three sets of SNPs and its coding protein pro-
ducts, identified by BOOST, FastEpistasis, and TEAM re-
spectively, were fed into DAVID for a functional enrichment
analysis. Seven functional categories, that is, Disease,
GOTERM, Pathway, UP_SEQ_FEATURE, SP_PIR_KEY-
WORDS, SMART, and INTERPRO were chosen by default
settings in DAVID. We set the gene count threshold as two
due to the limited amount of functional categories having
more than two markers and the p value cutoff as 0.1. The
details of enrichment analysis for top SNPs chosen by
BOOST, FastEpistasis, and TEAM have been provided in
excel files as a supplement.

Tables 1–3 show the most significantly enriched
functional categories. For the set of genes identified by
BOOST, the most significantly enriched term was “Whey
acidic protein‐type 4‐disulphide core” within the INTER-
PRO category with 4 out of 58 genes in total and a sig-
nificance level of 9.46 × 10−6. For the set of genes
identified by FastEpistasis, the most significantly enriched
term was “regulation of ERK1 and ERK2 cascade” within
the GOTERM_BP_DIRECT category with 3 out of 57
genes in total and a significance level of 1.85 × 10−3. For
the set of genes identified by TEAM, the most significantly
enriched term was “temperature homeostasis” within the
GOTERM_BP_DIRECT category with 3 out of 62 genes in
total and a significance level of 1.06 × 10−3.

3.3 | Phenotype variation explained by
top SNPs

We developed machine learning models to verify the sig-
nificance of selected SNPs regarding the disease by mea-
suring the accuracy of disease prediction. In fact, from each
method, we selected SNPs involved in the strongest pairwise
interactions and trained five models with stochastic gradient

2http://www.ensembl.org
3https://www.ncbi.nlm.nih.gov/
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descent (SGD), K nearest neighbors (KNN), support vector
machine (SVM), random forest, and multilayer perceptron
(MLP). Since there were 80 unique SNPs within the top 100
ranking pairs of SNPs detected by TEAM, we selected the top
80 SNPs identified by each method as well as allelic odds
ratio (Clarke et al., 2011) as the explanatory features. The
models' hyper‐parameters were optimized by applying a
k‐fold cross‐validation with random search. We used 90% of
the data set for training, and the other 10% was used as the
test set to measure the accuracy. The average accuracy
calculated for different approaches has been shown in
Figures 5.

As shown in the figure, the trend among different ap-
proaches and their comparative performance was almost
the same across all machine learning models. The SNPs
identified by TEAM predicted the disease with higher ac-
curacy than the SNPs selected by other approaches in al-
most all models. Furthermore, while TEAM and
FastEpistasis outperformed allelic odds ratio in all cases,
the performance of BOOST and allelic odds ratio was
comparable in many cases. Also, these results show that the
SNPs identified by BOOST cannot explain the phenotype
variation as efficiently as TEAM and FastEpistasis. As ex-
plained before, One reason could be that in our model we
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FIGURE 2 A network of SNPs available in the top 100 ranking SNP pairs identified by BOOST. Using Cytoscape Shannon et al. (2003), a
software for drawing networks, a network was drawn showing the pairwise relationship between SNPs identified by BOOST. The darker
circle represents SNPs encoding protein products whereas the lighter circle represents noncoding SNPs. There were 130 unique SNPs in
total, among which 10 were noncoding and 120 were coding SNPs. Isolated SNP pairs were not included in this figure. BOOST, BOolean
Operation‐based Screening and Testing; SNP, single‐nucleotide polymorphism
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used individual SNPs as the features while BOOST does not
consider the main effect of SNPs and is looking only for
SNPS with strong interactions (Guo et al., 2014; Wang
et al., 2011).

4 | DISCUSSION

Following the speculation of the intricacies of complex hu-
man diseases, the classification factors of disease phenotypes
are more likely to be gene–gene interactions instead of genes
contributing individually to the disease (Cordell, 2009).
Epistasis detection therefore can potentially enrich our ex-
isting knowledge of the disease etiology and help understand
the genetic architecture of the diseases. Powerful statistical

and computational algorithms have shown success for
mining extremely high‐dimensional data in academic dis-
ciplines of finance and engineering, and have started to see
potentials in applications to analyzing biomedical data in
recent years.

In this study, we explored the applications of three ex-
haustive pairwise epistasis detection algorithms, BOOST,
FastEpistasis, and TEAM in identifying SNP–SNP interac-
tions associated with CRC. After data preprocessing, the
three algorithms were applied to exhaustively evaluate all
pairwise interactions of 253,657 SNPs in a CRC GWAS data
set. Using a computer workstation running Ubuntu 20.04
and having 3.5 GHZ Intel Xeon Quad‐Core Processor and
128 GB RAM, BOOST completed the task in about 5 h. On
the other hand, TEAM had the longest run‐time which was

rs6061457

rs349703

rs9949

rs14139

rs13193217

rs4082413 rs236445

rs2270121

rs4925355

rs2243378

rs9372480

rs10947628

rs1276289

rs765516

rs309557

rs17431604

rs1276286

rs11653310

rs160278

rs7326

rs2846701

rs10068

rs160279

rs6065836

rs3809972

rs2425700

rs916295

rs2184161

rs12103986

rs11129270

rs13066873

rs1054426rs3809973

rs2370946

rs1129463

rs3809971

rs2855658

rs3177567

rs632943

rs1051344

rs2673062

rs9489152

rs3763978

rs1487318

rs2412531

rs1051334

rs309559

rs4924481

rs1487324

rs2279665

rs4668

rs11171852

rs11632061

rs1352259

rs7302060

rs1453183

rs4923876

rs1445111

rs1122800

rs16970851

rs3213930

rs1050382

rs6032346

rs2959536

rs1056837

rs9853624

rs2853699

rs1869302

rs1056836

rs267239

rs2853717

rs745960

rs6808

rs11080357

rs11951461

rs330919

rs17206303

rs2812

rs10493703
rs1050674

rs17206282

rs2846723

rs12079242

rs2243379

rs745961

rs349698

rs12107527

rs11084679

rs11070275
rs187034

rs6492947

rs349699

rs7236563
rs1047339

rs1003250

rs349704

rs11740697

rs584196

rs349700

rs6504218

rs1468542

rs9303470

rs1019129

rs2184157

rs3091929

rs330905

FIGURE 3 A network of SNPs available in the top 100 ranking SNP pairs identified by FastEpistasis. Using Cytoscape, a software for
drawing networks, a network was drawn showing the pairwise relationship between SNPs identified by FastEpistasis. The darker circle
represents SNPs encoding protein products whereas the lighter circle represents noncoding SNPs. There were 138 unique SNPs in
total, among which 16 were noncoding and 122 were coding SNPs. Isolated SNP pairs were not included in this figure. SNP, SNP,
single‐nucleotide polymorphism
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about 11.5 days (271 h), and the experiment was completed
by FastEpistasis in around 4 days (98.5 h).

We then closely investigated the set of 100 top SNP
pairs ranked by the three algorithms based on the im-
portance of their contribution to the disease phenotypic
association. BOOST and FastEpistasis shared 74 pairs of
SNPs, while the set of SNP pairs chosen by TEAM was
completely different. Their difference in performance can
be due to the fact that they define the interaction effect
differently. Although TEAM performs best on data with
main effect, BOOST identifies statistical interactions with-
out considering the main effect (Guo et al., 2014; Wang
et al., 2011). In fact, by applying χ2 test, TEAM finds
pairwise interactions without any assumption about the
data. On the other hand, BOOST uses a log likelihood ratio
test and has a better performance when interaction effect
contributes significantly to the model (Wang et al., 2011).

The three coding SNP sets, discovered by BOOST, Fas-
tEpistasis, and TEAM, mapped to 58, 57, and 62 genes, re-
spectively. A number of these CRC‐associated genes have
already been discovered in the literature, including MACF1,

USP49, SMAD2, SMAD3, TGFBR1, and RHOA. Microtubule
actin crosslinking factor 1 (MACF1) was identified as one of
the oncofetal biomarkers by protein profiling of serum
samples from CRC patients, healthy control adults, and fetus
(Ma et al., 2012). USP49 was found that can increase cell
sensitivity to etoposide (Eto)‐induced DNA damage and was
suggested as a tumor suppressor during the development of
CRC (Tu et al. (2018)). Some analyses indicate that failure to
express SMAD2 is associated with advanced‐stage disease,
poor prognosis, and shorter survival (W. Xie et al., 2003).
(Fleming et al., 2013) suggested SMAD2 and SMAD3 mu-
tations as true contributors to the mutation burden in CRCs,
and the result of (Zhu et al., 2017) showed that SMAD3
mutant mice develop colon cancer with overexpression of
COX‐2. Many studies indicated Ras homologue family
member A (RHOA) as a tumor suppressor in CRC and
showed that low RHOA expression is associated with poor
prognosis and significantly shorter survival (Arango et al.,
2005; Dopeso et al., 2018; Jeong et al., 2016; Rodrigues et al.,
2014). Furthermore, Transforming growth factor beta re-
ceptor type 1 (TGFBR1) has been found to contribute to the
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FIGURE 4 A network of SNPs available in the top 100 ranking SNP pairs identified by TEAM. Using Cytoscape, a software for
drawing networks, a network was drawn showing the pairwise relationship between SNPs identified by TEAM. The darker circle
represents SNPs encoding protein products whereas the lighter circle represents noncoding SNPs. There were 80 unique SNPs in
total, among which 20 were noncoding and 60 were coding SNPs. SNP, SNP, single‐nucleotide polymorphism; TEAM, TEAM,
Tree‐based Epistasis Association Mapping
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TABLE 1 Enrichment gene oncology (GO) terms on 58 BOOST‐identified genes

Category Term
Protein
count p Value Bonferroni Benjamini FDR

INTERPRO Whey acidic protein‐type
4‐disulphide core

4 9.46 × 10−6 1.32 × 10−3 1.32 × 10−3 1.11 × 10−2

UP_KEYWORDS Serine protease inhibitor 5 5.65 × 10−5 7.26 × 10−3 7.26 × 10−3 6.57 × 10−2

GOTERM_MF_DIRECT Serine‐type endopeptidase
inhibitor activity

5 1.27 × 10−4 1.37 × 10−2 1.37 × 10−2 1.43 × 10−1

UP_KEYWORDS Protease inhibitor 5 2.33 × 10−4 2.96 × 10−2 1.49 × 10−2 2.71 × 10−1

GOTERM_BP_DIRECT Negative regulation of
endopeptidase activity

5 2.79 × 10−4 7.38 × 10−2 7.38 × 10−2 3.67 × 10−1

GOTERM_BP_DIRECT Dermatan sulfate biosynthetic process 3 4.36 × 10−4 1.13 × 10−1 5.81 × 10−2 5.73 × 10−1

KEGG_PATHWAY Hippo signaling pathway 4 4.71 × 10−3 1.87 × 10−1 1.87 × 10−1 4.32

INTERPRO Uncharacterized protein family;
WAP four‐disulphide core

2 4.95 × 10−3 5 × 10−1 2.93 × 10−1 5.69

UP_SEQ_FEATURE domain:WAP 3 2 4.98 × 10−3 7.04 × 10−1 7.04 × 10−1 6.25

UP_SEQ_FEATURE domain:WAP 2 2 1.24 × 10−2 9.52 × 10−1 7.82 × 10−1 14.91

UP_SEQ_FEATURE domain:WAP 1 2 1.24 × 10−3 9.52 × 10−1 7.82 × 10−1 14.91

GOTERM_BP_DIRECT Embryonic foregut morphogenesis 2 2.33 × 10−2 9.98 × 10−1 8.85 × 10−1 26.76

UP_SEQ_FEATURE domain:BPTI/Kunitz inhibitor 2 2.71 × 10−2 9.99 × 10−1 8.93 × 10−1 29.9

UP_SEQ_FEATURE domain:WAP 2 2.71 × 10−2 9.99 × 10−1 8.93 × 10−1 29.9

SMART SM00217:WAP 2 2.89 × 10−2 6.51 × 10−1 6.51 × 10−1 22.99

GOTERM_BP_DIRECT Regulation of cardiac muscle cell
contraction

2 3.1 × 10−2 9.99 × 10−1 8.85 × 10−1 33.98

GOTERM_MF_DIRECT co‐SMAD binding 2 3.15 × 10−2 9.69 × 10−1 8.23 × 10−1 30.29

UP_KEYWORDS Ehlers‐Danlos syndrome 2 3.35 × 10−2 9.88 × 10−1 7.69 × 10−1 32.71

UP_KEYWORDS Polymorphism 37 3.43 × 10−2 9.89 × 10−1 6.76 × 10−1 33.41

SMART KU 2 3.69 × 10−2 7.42 × 10−1 4.92 × 10−1 28.53

Abbreviations: BOOST, BOolean Operation‐based Screening and Testing; FDR, false discovery rate.

TABLE 2 Enrichment gene oncology (GO) terms on 57 FastEpistasis‐identified genes

Category Term Protein count p value Bonferroni Benjamini FDR

GOTERM_BP_DIRECT Regulation of ERK1 and ERK2 cascade 3 1.85 × 10−3 4.18 × 10−1 4.18 × 10−1 2.43

INTERPRO Uncharacterized protein family, WAP
four‐disulphide core

2 4.95 × 10−3 5.39 × 10−1 5.39 × 10−1 5.79

KEGG_PATHWAY Chemical carcinogenesis 3 1.27 × 10−2 4.38 × 10−1 4.38 × 10−1 11.34

UP_KEYWORDS Polymorphism 36 2.79 × 10−2 9.69 × 10−1 9.69 × 10−1 27.85

GOTERM_BP_DIRECT Protein phosphorylation 5 2.87 × 10−2 9.99 × 10−1 9.86 × 10−1 32.19

GOTERM_BP_DIRECT Cell adhesion 5 2.94 × 10−2 9.99 × 10−1 9.45 × 10−1 32.75

GOTERM_BP_DIRECT Dermatan sulfate biosynthetic process 2 3.03 × 10−2 9.99 × 10−1 8.94 × 10−1 33.61

GOTERM_MF_DIRECT Enhancer binding 2 3.35 × 10−2 9.86 × 10−1 9.86 × 10−1 32.55

KEGG_PATHWAY Cell adhesion molecules (CAMs) 3 3.73 × 10−2 8.19 × 10−1 5.74 × 10−1 30.03

Abbreviations: FDR, false discovery rate.
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TABLE 3 Enrichment gene oncology (GO) terms on 62 TEAM‐identified genes

Category Term Protein Count p value Bonferroni Benjamini FDR

GOTERM_BP_DIRECT Temperature homeostasis 3 1.06 × 10−3 4.51 × 10−1 4.51 × 10−1 1.55

GOTERM_BP_DIRECT Transforming growth factor beta receptor
signaling pathway

4 1.68 × 10−3 6.11 × 10−1 3.76 × 10−1 2.43

KEGG_PATHWAY TGF‐beta signaling pathway 4 1.72 × 10−3 1.24 × 10−1 1.24 × 10−1 1.8

UP_KEYWORDS Oxidoreductase 7 2 × 10−3 2.58 × 10−1 2.58 × 10−1 2.36

GOTERM_BP_DIRECT Positive regulation of cytokinesis 3 4.03 × 10−3 8.97 × 10−1 5.31 × 10−1 5.74

GOTERM_BP_DIRECT Ureteric bud development 3 4.25 × 10−3 9.09 × 10−1 4.51 × 10−1 6.04

GOTERM_MF_DIRECT Positive regulation of stress fiber assembly 3 5.17 × 10−3 9.46 × 10−1 4.42 × 10−1 7.3

UP_KEYWORDS Cell projection 7 5.72 × 10−3 5.75 × 10−1 3.48 × 10−1 6.62

UP_KEYWORDS Polymorphism 37 7.45 × 10−3 6.72 × 10−1 3.1 × 10−1 8.53

GOTERM_BP_DIRECT Regulation of potassium ion transport 2 1.02 × 10−2 9.97 × 10−1 6.18 × 10−1 13.94

UP_KEYWORDS Phosphoprotein 28 1.19 × 10−2 8.31 × 10−1 3.59 × 10−1 13.26

GOTERM_MF_DIRECT Transforming growth factor beta receptor,
pathway‐specific cytoplasmic mediator
activity

2 1.3 × 10−2 8.71 × 10−1 8.71 × 10−1 14.54

KEGG_PATHWAY Colorectal cancer 3 1.37 × 10−2 6.54 × 10−1 4.12 × 10−1 13.53

UP_SEQ_FEATURE Nucleotide phosphate‐binding region 3 1.51 × 10−2 9.84 × 10−1 9.84 × 10−1 18.16

UP_KEYWORDS Alternative splicing 33 1.54 × 10−2 9.01 × 10−1 3.71 × 10−1 16.93

GOTERM_CC_DIRECT Endoplasmic reticulum 7 1.55 × 10−2 8.49 × 10−1 8.49 × 10−1 16.46

KEGG_PATHWAY Adherens junction 3 1.77 × 10−2 7.47 × 10−1 3.68 × 10−1 17.17

GOTERM_CC_DIRECT Endosome 4 1.8 × 10−2 8.89 × 10−1 6.67 × 10−1 18.85

UP_SEQ_FEATURE domain:MH1 2 1.86 × 10−2 9.94 × 10−1 9.21 × 10−1 21.88

UP_SEQ_FEATURE domain:MH2 2 1.86 × 10−2 9.94 × 10−1 9.21 × 10−1 21.88

SMART SM00524:DWB 2 1.89 × 10−2 5.43 × 10−1 5.43 × 10−1 16.13

GOTERM_CC_DIRECT SMAD protein complex 2 1.96 × 10−2 9.09 × 10−1 5.49 × 10−1 20.34

INTERPRO SMAD domain, Dwarfin‐type 2 1.97 × 10−2 9.66 × 10−1 9.66 × 10−1 21.51

INTERPRO MAD homology, MH1 2 1.97 × 10−2 9.66 × 10−1 9.66 × 10−1 21.51

INTERPRO Dwarfin 2 1.97 × 10−2 9.66 × 10−1 9.66 × 10−1 21.51

UP_KEYWORDS Aortic aneurysm 2 2.48 × 10−2 9.76 × 10−1 4.65 × 10−1 25.92

UP_SEQ_FEATURE Sequence variant 37 2.52 × 10−2 9.99 × 10−1 9.01 × 10−1 28.56

GOTERM_BP_DIRECT Negative regulation of cytosolic calcium ion
concentration

2 2.53 × 10−2 9.99 × 10−1 8.73 × 10−1 31.3

GOTERM_BP_DIRECT Axonogenesis 3 2.61 × 10−2 9.99 × 10−1 8.44 × 10−1 32.07

SMART DWA 2 2.83 × 10−2 6.91 × 10−1 4.45 × 10−1 23.2

GOTERM_BP_DIRECT Positive regulation of gene expression 4 2.93 × 10−2 9.99 × 10−1 8.44 × 10−1 35.3

INTERPRO MAD homology 1, Dwarfin‐type 2 2.93 × 10−2 9.94 × 10−1 9.2 × 10−1 30.47

GOTERM_BP_DIRECT Positive regulation of catenin import into
nucleus

2 3.03 × 10−2 9.99 × 10−1 8.23 × 10−1 36.27

GOTERM_BP_DIRECT Ethanol oxidation 2 3.03 × 10−2 9.99 × 10−1 8.23 × 10−1 36.28

GOTERM_BP_DIRECT Roundabout signaling pathway 2 3.03 × 10−2 9.99 × 10−1 8.23 × 10−1 36.28
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CRC development, and increased tumor cell proliferation
(Zeng et al., 2009; R. Zhou et al., 2018).

We also identified some novel SNPs associated with
CRC in our results. For instance, SNP rs2412531 which
was the largest hub in both BOOST and FastEpistatsis had
significant interactions with three SNPs, rs4924481,
rs11632061, and rs4923876. In fact, our analyses based
on both BOOST and FastEpistasis marked these
three interactions (i.e., [rs2412531, rs4924481], [rs2412531,
rs11632061], and [rs2412531, rs4923876]) as the three
strongest interactions available. Interestingly, all these
four SNPs are mapped to the same gene, Coiled‐Coil
Domain‐Containing Protein 32 (CCDC32). Although to
the best of our knowledge, no research has discussed the
association of CCDC32 with CRC, our study suggested
that CCDC32 could be a potential risk factor worth further
experimental investigation.

The pathway term “Colorectal cancer” was sig-
nificantly enriched (p = 1.37 × 10−2) in top genes found
by TEAM. Three genes were included in this category,
TGFBR1, RHOA, and SMAD3, which were discussed in a
previous paragraph. In addition, terms “Serine protease
inhibitor” and “Serine‐type endopeptidase inhibitor ac-
tivity” were significantly enriched (p = 5.65 × 10−5 and

p = 1.27 × 10−4, respectively) in top genes ranked by
BOOST. It was suggested in the literature that the levels of
serine protease in colon tissue interstitial fluid and serum
can serve as an indicator of CRC progression (Y. Xie et al.,
2016). Another interesting finding was the enriched
term “Protease inhibitor” (p = 2.33 × 10−4). It has been
reported that proteases are implicated in tumor growth
and progression, and protease inhibitors could be con-
sidered as a potent strategy in cancer therapy (Eatemadi
et al., 2017). The enriched term “Regulation of ERK1 and
ERK2 cascade” (p = 1.85 × 10−3) was also evidenced by
recent discovery of the correlation of ERK/MAPK signal-
ing pathway with proliferation and apoptosis of colon
cancer cells (G. Zhou et al., 2019).

In summary, we applied three powerful computa-
tional algorithms to identify the synergistic effect of SNP
pairs on phenotypic association of CRC. Using BOOST,
FastEpistasis, and TEAM, all pairwise SNP interactions
were evaluated on a CRC GWAS data set and three sets
of 100 top‐ranked SNP pairs were further investigated.
We constructed three networks using these three sets of
SNP pairs and discussed their properties. We also per-
formed functional enrichment analysis on the top iden-
tified SNP pairs using DAVID. Although the effect of

TABLE 3 (Continued)

Category Term Protein Count p value Bonferroni Benjamini FDR

GOTERM_CC_DIRECT Node of Ranvier 2 3.64 × 10−2 9.8 × 10−1 6.23 × 10−1 30.97

INTERPRO SMAD domain‐like 2 3.89 × 10−2 9.99 × 10−1 8.18 × 10−1 38.62

Abbreviation: FDR, false discovery rate; TEAM, Tree‐based Epistasis Association Mapping.

FIGURE 5 The average accuracy of disease prediction using 80 top SNPs as features selected by BOOST, TEAM, FastEpistasis, and
allelic odds ratio. We trained five machine learning models, namely logistic regression with SGD, KNN, SVM, random forest, and MLP.
BOOST, BOolean Operation‐based Screening and Testing; KNN, K nearest neighbors; SGD, stochastic gradient descent; SVM, support vector
machine; TEAM, Tree‐based Epistasis Association Mapping
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some of highlighted SNPs and genes on CRC has already
been proved in previous studies, it seems worthy to va-
lidate the influence of the rest by further biological re-
search. Identification of these genetic risk factors of CRC
can be helpful in identifying people with higher CRC
risk, providing more efficient treatments and developing
more effective drugs.
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