
1232 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

A Survey and Taxonomy of Cyber Foraging of
Mobile Devices

Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi, Member, IEEE

Abstract—With the ever-increasing advancement of mobile
device technology and their pervasive usage, users expect to
run their applications on mobile devices and get the same
performance as if they used to run their applications on pow-
erful non-mobile computers. There is a challenge though in
that mobile devices deliver lower performance than traditional
less-constrained and non-mobile computers because they are
constrained by weight, size, and mobility in spite of all their
advancements in recent years. One of the most common solutions
that has ameliorated this performance disparity is cyber foraging,
wherein nearby non-mobile computers called surrogates are
utilized to run the whole or parts of applications on behalf
of mobile devices. In this paper, we present a survey of cyber
foraging as a solution to resolve the challenges of computing on
resource-constrained mobile devices. We also explain the most
notable cyber foraging systems and present a categorization
of existing cyber foraging approaches considering their type of
dynamicity, granularity, metrics used, surrogate types and scale,
location of their decision maker unit, remoteness of execution,
migration support, and their overheads.

Index Terms—Cyber Foraging, Mobile Devices, Resource-
Constrained Computing, Taxonomy.

I. INTRODUCTION

NOWADAYS, mobile devices are very popular. On a
planet with around 6.8 billion people, the number of

people with cell phone subscriptions worldwide has reached
4.6 billion at the end of 2009 and is expected to reach five
billion by the end of 2010 [1]. People all over the world are
increasingly using their cell phones for daily tasks such as
Internet banking, emailing, and emergencies such as viewing
online traffic map or using routing applications to find the
best next course or connecting to a medical information
system to take a prescription urgently [2]. In this paper, by
mobile device, we refer to pocket-sized handheld computing
devices such as PDAs and Tablets with Wi-Fi connection, as
well as to Smartphones that in addition to Wi-Fi connection
are equipped with mobile broadband network technologies
such as GPRS, EDGE, 3G, 4G, EV-DO, LTE and WiMAX.

With mobile computing and wireless Internet, the dream of
accessing information anywhere and anytime is getting closer
to reality [3]. However, mobile devices are always resource
poor. At any level of cost and technology, considerations such
as weight, size, battery life, ergonomics, and heat dissipation

Manuscript received 29 January 2011; revised 15 June 2011, 12 September
2011, and 06 October 2011.

The authors are with the School of Computer Engineering, Iran Univer-
sity of Science and Technology, Tehran, Iran (e-mails: msharifi@iust.ac.ir,
so kafaie@comp.iust.ac.ir, kashefi@{ieee.org, iust.ac.ir}). Mohsen Sharifi is
the corresponding author.

Digital Object Identifier 10.1109/SURV.2011.111411.00016

impose severe restrictions on computational resources such as
processor speed, memory size and disk capacity [4]. Although
mobile device technology is evolving but mobile devices
always remain more resource constrained than traditional
non-mobile computers [4], [5].

On the other hand, new applications running on mobile
devices in recent years have attracted users to use and benefit
from mobile devices. Examples of these applications include
natural language translators [6], [7], speech recognizers
[6]–[9], optical character recognizers [6], image processors
[10]–[12], games with high computing, capture, edit, annotate
and upload videos [13], and a useful application that helps
Alzheimer people in their daily life by providing them with
a wearable device with a head-up display in the form of
eyeglasses, a camera for scene capture and earphones [4].
Unfortunately, these applications require higher computing
power, memory, and battery lifetime than is available on
resource constrained mobile devices. They also require faster
responses than is currently supported on mobile devices.

Several approaches have proposed to empower the resource
shortage of mobile devices. One approach is to rewrite
applications anew for resource-constrained mobile devices.
This approach is very expensive and can lead to ad-hoc
applications [14], [15]. Two other approaches [15]–[20] have
dealt with the problem of resource consumption, especially
to increase battery lifetime.

The first approach addresses the issue from supply side (1)
by manufacturing of more powerful resources (e.g. batteries
with higher lifetime) while preserving their lightweight and
small size [20] and (2) by replenishing a battery’s energy by
external actions such as human movement [15], [20] or by
taking advantage of available energy resources such as solar
power [16], [20]. Unfortunately, neither of these alternatives
has remedied the resource consumption problem of resources
noticeably. For example, in the battery lifetime prolonging
case, the energy densities of batteries are already very high
[15] and other alternatives though attractive have not been
widely applicable and used yet.

The second approach tries to reduce the amount of required
resources [15], [16]. The most favorable techniques in this
approach include: (1) hardware and software management
techniques, (2) fidelity adaptation [17], and (3) cyber foraging
[19]. The hardware and software management techniques
include techniques such as dynamic voltage frequency scaling
[18] or similar ways to improve hardware power efficiency,
or developing and deploying resource-aware software.
Fidelity adaptation manages the trade-off between resource
consumption and application quality where by fidelity we

1553-877X/12/$31.00 c© 2012 IEEE

SHARIFI et al.: A SURVEY AND TAXONOMY OF CYBER FORAGING OF MOBILE DEVICES 1233

mean ”an application-specific metric of quality that one can
adjust by modifying the application’s runtime parameters”
[16]. Although the fidelity adaptation technique decreases
the quality of results, it enables the execution of applications
when there are no other solutions to run them in standard
mode. Cyber foraging is beneficial when there are some idle
stationary computers nearby mobile devices all connected
via a wireless network such that the tasks of mobile devices
can be offloaded to nearby surrogates to ameliorate resource
poverty of mobile devices.

In this paper, we focus on the cyber foraging technique
in the second approach. In what follows, Section II presents
an overall view of different cyber foraging techniques.
Section III presents the most effective metrics in cyber
foraging techniques. Section IV presents and discusses the
most popular available cyber foraging techniques. Section V
presents our proposed taxonomy of cyber foraging techniques
and Section VI concludes the paper.

II. CYBER FORAGING

The term ”cyber foraging” was first introduced by Satya-
narayanan [19] to augment the computing resources of a wire-
less mobile device by exploiting available static computers,
although similar offloading approaches to decrease the energy
consumption of mobile devices had been proposed earlier by
researchers such as Othrnan et al. [21]. Cyber foraging is
the discovery of static idle computers called surrogates in
the vicinity of a mobile device and entrusting some of the
tasks of the mobile device to them [19]. As computers become
cheaper and more plentiful, cyber foraging approaches become
more reasonable to employ in pervasive computing [6], [7],
[9], [14], [22]–[25], Grid computing [5], [26]–[28], and cluster
computing [29].

In recent years, Cloud computing has also been used for
some cyber foraging scenarios too [13], [30]–[38]. Although
mobile devices can considerably benefit from offloading their
tasks to computational Clouds, but there are some unresolved
challenges in employing computational Clouds as surrogates
for cyber foraging. There is no guarantee of availability of sur-
rogates and application service level in computational Clouds
[38]. Generally, users must pay for the Cloud services [23],
[38]. To use Cloud services, mobile devices must be connected
implying that applications become inaccessible when mobile
devices are offline [35]. In addition, the use of 3G as the
default connectivity solution for mobile devices, despite all
improvements in broadband technologies, is still outperformed
by WLAN in both energy consumption and network band-
width and latency [36], [37], [39]. The lower bandwidth and
the higher latency of 3G compared to WLAN are not solely
due to the characteristics of these technologies. The disparity
is attributed more to the transmission media they use. In 3G
or other mobile broadband technologies, data is transmitted
through the Internet in non-dedicated channels with higher
communication latencies than in more dedicated channels of
LANs that are mostly used by WLANs. Nevertheless, there
is no substantial difference between Wi-Fi and 3G when data
must be transmitted through the Internet [36], [37].

Anyhow, in some scenarios such as when there is no
surrogate in the vicinity of mobile devices, the employment of
cyber foraging in computational Clouds would be useful [4],
[9], [40].

A. Cyber Foraging Qualification

Cyber foraging combines the mobility of small devices with
high computing capability and extensive resources of nearby
static servers by offloading the tasks of mobile devices to
surrogates for remote execution [7]. Nevertheless, there is a
challenge. Is offloading reasonable in all situations?

If enough resources (memory, energy, or storage) are not
available on mobile devices to run a program, a decision must
be made to offload or not to offload the program to nearby
surrogates, based on the availability of resources on surrogates
and the amount of resources required for offloading.

Let us consider TM as the time of running a program on a
mobile device and TS as the time of running the program on
a surrogate. Let us further assume that the offloading requires
transmission of DT bytes of data and code, and receipt of DR

bytes of result; BT is the network’s transmission bandwidth
and BR is the network’s receive bandwidth. We can define
Toffload = DT /BT +DR/BR + TS as the offloading time.
It is obvious that the offloading is effective only when TM

is bigger than Toffload. Therefore, as usually TM � TS , the
computation part of program must be significantly larger than
its communication part. This implies that when one uses cyber
foraging to improve response time or energy consumption, the
offloading mechanism would be more effective for applica-
tions requiring more computation than communication such
as chess game and generation of very large prime numbers.

The goal of cyber foraging is to decrease the total response
time (cost) of a program, not a part of it. For example, suppose
running a compute intensive program on a mobile device with
a large amount of data such as looking for the most similar
picture to a given picture. Computation on the surrogate takes
lower time, but on the other hand, the offloading of data takes
a lot of time depending on the network type and distance
between the surrogate and the mobile device. We illustrate a
simple flowchart of cyber foraging qualification in Figure 1.

Therefore, we can conclude that large tasks requiring higher
execution times make offloading more effective because the
benefits of computation on a more powerful and faster sur-
rogate outweigh the cost of communication. However, the
constraints on mobile devices are due to the portability and
mobility of such devices. The portability of mobile devices
restricts the size of tasks [23], [41]. If a task is too large
to complete its execution before leaving the area in the
networking coverage of a surrogate, offloading is almost use-
less or complex and time-consuming solutions such as check
pointing and process migration must be used, too. Therefore,
a suitable offloading approach must specially consider the
mobility nature of mobile devices and manage a trade-off
between mobility and task size.

B. Cyber Foraging Steps

We summarize the steps of a cyber foraging approach as
follows. It must be noted that all of the researches and works in

1234 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

Start

Is there any
surrogate,
nearby?

No

Yes

Does Mobile
have enough
resources?

Don’t run the
application

Local execution

No

Select the best
location to run

application

Yes

User
Preferences

Available
resources

Predicted
application

requirement
End

Fig. 1. A sample flow of running an application on a mobile device

cyber foraging and task offloading may not contain or address
all of the following steps.

• Surrogate Discovery. To do cyber foraging, available
idle surrogates must be found first. Some researches [14],
[42]–[44] have addressed surrogate discovery.

• Context Gathering. Monitoring of available resources in
surrogates and mobile devices and estimating application
resource consumptions, defied as context gathering, are
considered in some cyber foraging systems [6], [7], [23].

• Partitioning. In this step, a task is divided into smaller
size subtasks, and undividable i.e. unmovable parts are
specified. Some researches [30], [45] do the partitioning
automatically.

• Scheduling. The most important step is making decision
to place each task at the surrogate(s) most capable of
performing it, based on the context information and the
cost of doing so. Many researches [6], [7], [14], [21],
[26], [38], [46]–[48] have considered this step.

• Remote Execution Control. The final step involves the
establishment of a reliable connection to surrogate to pass
its required information, remote execution, and the receipt
of returned results. Various researches [4], [7], [9], [11],
[23], [42], [49] have considered remote execution control.

III. METRICS OF CYBER FORAGING

In this section, we review the most effective metrics that can
be used to decide whether to offload a program from a mobile
device to one or more surrogates or not. We have categorized
the cyber foraging metrics (Figure 2) into four groups namely:
mobile and surrogate specifications, application specifications,
network specifications, and context specifications that are
discussed in follow.

A. Mobile and Surrogate Specifications

Different computers have different processor types, speeds,
memory capacities, or storage sizes. If a mobile device does
not have enough memory or storage to run a program, or its

processor speed is too low and running the program takes
too long, cyber foraging becomes a reasonable choice. In
computational Clouds, the cost of surrogating is an important
metric [50]. The cost of surrogating is measured in terms of
processor cycles, memory size, storage size, communication
traffic rate, input data size, and execution time of the chosen
surrogate [35].

One of the most important reasons to offload a task is
to reduce the energy consumption. The amount of usage of
processor cycles, memory and storage for computation and
communication with outer world via I/O devices, are the
metrics that affect the energy consumption.

B. Application Specifications

Applications can be processor intensive, memory intensive, or
I/O intensive [51]. As noted in Section II, cyber foraging is
more useful to processor intensive applications; irrespective
of mobility, higher rates of execution time scale for more
offloading. Therefore, an effective metric for cyber foraging
of applications is the intensity of computations and long
execution times.

There may be some exceptions to offloading. It is prob-
able that some parts of applications are not transferable to
surrogates. These include codes that run local services such
as user interfaces, codes that interact with I/O devices [21],
[31], [47], codes that interact with external components that
might be affected by re-execution [31], native methods of a
language with different implementations on different platforms
[14], parts that directly access device-specific information
[47], tasks that need local resources to run [21], and compo-
nents whose execution locations depend on other parts [52].
Therefore, the nature of an application is another important
metric that determines which (parts of) applications can be
offloaded and remotely executed.

SHARIFI et al.: A SURVEY AND TAXONOMY OF CYBER FORAGING OF MOBILE DEVICES 1235

- Type
- Untransferable parts
- Average execution time
- Input size

- User
Preferences
(Data
confidentially,
Fidelity)

- CPU (speed, type)
- Memory size
- Storage size
- Load
- Available memory
- Available storage
- Available battery
- Location

- CPU (speed, type)
- Memory size
- Storage size
- Load
- Available memory
- Available storage

- Type (3G, WiFi, Wimax)
- Bandwidth

Fig. 2. Important metrics influencing the offloading decision

C. Network Specifications

According to the geographical scope and distance of connected
nodes, computer networks are categorized as LAN, MAN
or WAN networks [37]. Cyber foraging usually uses the
LAN type of networks except in the computational Cloud,
which uses the Internet [4], [31]. LAN networks could be
wired or wireless, but due to the mobility of mobile device,
wireless networks are the only available option for mobile
devices. Different types of wireless networks such as 3G,
Wi-Fi, and WiMAX have different features and bandwidths.
In addition, surrogates can connect via any type of network.
Therefore, type, specification, bandwidth, and authentication
type of every network is an effective metric for selecting an
appropriate communication media between mobile devices and
surrogates.

D. Context Specifications

Due to the mobility of mobile device, decisions on offloading
of tasks very much depend on the status of devices, surrogates
and tasks at the time of decision-making. Available memory
and storage spaces, current loads on mobile devices and
surrogates, and available battery lifetime of mobile devices
are important metrics for taking proper decisions. Current
network conditions that can change depending on location and
workload, or input size of the application, are another set of
effective metrics on offloading decision too.

The users’ physiological and mental states, goals, tasks,
actions, roles and preferences constitute the contextual proper-
ties [53] that affect the offloading decision too. For example,
a user can define expected application throughput, confiden-
tiality level of data and allowed latency. It is possible that
execution of a program on a surrogate requires the transfer of
confidential data to the surrogate. If data is highly confidential,
program should not be offloaded to the surrogate at all.
Another example is when several translator engines can be
used for translations [7] and some engines provide more
accuracy and fidelity, albeit consume more resources, energy,
and time. User can be free to select the best engine according
to the application and the importance of speed and accuracy.

IV. CYBER FORAGING SYSTEMS

In this section, we survey most credible researches and works
on cyber foraging. There are many researches on the cyber
foraging area, each focusing on different aspects of cyber
foraging to ameliorate resource poverty in mobile devices.

A. Spectra

Spectra [7], [54] is one of the first proposed cyber foraging
systems focused on reducing latency and energy consumption.
Spectra has added a feature called self-tuning to estimate
the resources needed to execute an application. It monitors
application behavior, measures resource consumption and uses
linear regression to model resource demand in terms of
application fidelity and input parameters for further prediction
of future resource demands. To estimate energy consumption,
Spectra does not separate energy rate of various statuses
of mobile device (i.e. idle, computing, and communicating).
It just monitors energy consumption of two states namely
local execution and remote execution. Therefore, when the
input data of a task changes, Spectras estimations become
inaccurate. Furthermore, to measure the energy consumption
of each task, Spectra monitors battery level before and after
execution. Therefore, if some tasks execute in parallel, Spectra
must throw away the monitored data increasing the required
time to reach a good estimation about energy consumption of
each task.

Developers must follow most of the cyber foraging steps
in Spectra manually significantly changing the code. Before
execution, application should call Spectra to determine exe-
cution location of each operation. Then application itself is
responsible for executing operations according to Spectra’s
proposed plan. Finally, when the operation is done, application
should notify Spectra. All of these commands should be
embedded in the application code by the developer. Therefore,
there is a need to modify application’s code entirely to use
Spectra. Furthermore, Spectra is only usable for applications
with pre-installed corresponding services on surrogates.

1236 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

Provided by application

Tactics
description

Utility
Function

Tactics selection
engine

Resource
monitors

Resource demand
predictor

Operation
executor

Log file

User Specific
Knowledge

Selected tactic

Resource
availability

Predicted
resource usage

(tactic,
resource consumption)

Fig. 3. Architecture of Chroma [56]

B. Chroma

Chroma [6], [55], [56] tries to improve Spectra by reducing
the burden on developers. To do so, Chroma uses a new
concept called tactics that are meaningful ways of applica-
tion partitioning, specified by the programmer. Tactics differ
in application fidelity and the amount of used resources.
Upon running of the application, Chroma uses the brute-force
method to choose the best or near the best tactic.

On the other hand, user defines a utility function for every
task that describes the weight and importance of each factor
(i.e. CPU speed and energy) in decision making by Chroma.
To choose among tactics, Chroma uses a fixed utility function
with equal weights for fidelity and latency but ignores battery
lifetime. Therefore, a tactic is chosen that maximizes the rate
of fidelity/latency.

Chroma, like Spectra, uses a history-based approach to
predict future resource demands. The proposed mechanism
is initialized by offline logging and improves accuracy by
online monitoring and machine learning techniques at runtime.
Because the determination of resource availability takes time,
Spectra and Chroma use probably less up to date and accurate
cached results. Spectra and Chroma both assume that the
application is installed on the surrogates and there is no
need to send the application code. However, this assumption
decreases the flexibility and their approach does not work on
new surrogates and tasks.

Furthermore, Chroma exploits over-provisioned environ-
ments that are full of idle computing resources as follows:
(1) it sends a task execution request in parallel to several sur-
rogates and chooses the fastest response; (2) it splits operation
data and forwards each part to a different surrogate, wherein
the programmer specifies the method of data decomposition
and composition; (3) it sends the same task execution request
with different fidelities to different surrogates and picks the
result with the highest fidelity that satisfies the latency thresh-
old. Figure 3 shows Chroma’s architecture.

Service Discovery Server

VirtualVirtual

Client

Surrogate

1- Service Discovery
Request

2- Service
Discovery Response

3- Service Start
Request

4- Virtual
Server Start

5- Service Start
Response

6- Sub Task Configuration
Request

Fig. 4. Control flow of Goyal and Carter’s system [42]

C. Goyal and Carter’s System

Goyal and Carter (GnC) [42] use the virtual machine technol-
ogy and present a cyber foraging system that needs Internet
connection to increase application performance and decrease
energy consumption. The system has a service discovery
server that allows all surrogates to register themselves using
an XML descriptor file. When a mobile device intends to use
the cyber foraging system, it sends a request to the service
discovery server and receives the IP address and port number
of an appropriate surrogate. Then the mobile device requests
a virtual server with specific resource guarantees.

If the surrogate can provide the mobile device’s resource
demand, it starts a virtual server and sends its IP address to
the mobile device. After this step that takes several minutes,
the mobile device ships only the URL of the program and a
shell script to the surrogate. This shell script is responsible
for downloading the real program over the Internet, installing,
and running it. Figure 4 shows the control flow of this system.

D. Slingshot

Slingshot [9] is a cyber foraging system based on the virtual
machines technology. In this system, the mobile device and
surrogates should be connected to the Internet. It assumes that
a reliable home server is always accessible via the Internet
and if there is no surrogate in the LAN, heavy tasks are
offloaded to the home server. It is obvious that higher latency
and lower bandwidth in the Internet slows task offloading to
the home server than to the nearby surrogates. Figure 5 shows
the network topology used by Slingshot.

Upon running of a heavy task, Slingshot sends the task
to the home server and all available surrogates. It uses the
fastest response, which is probably from one of the surrogates.

SHARIFI et al.: A SURVEY AND TAXONOMY OF CYBER FORAGING OF MOBILE DEVICES 1237

LAN

Internet

Home server

Surrogate Surrogate

Mobile device

Fig. 5. Network topology used by Slingshot

APP

MAUI
Runtime

Client
Proxy

Profiler

Solver

MAUI
Runtime

Server
Proxy

Profiler

Solver

APP

MAUI Controller

Mobile Device MAUI Server

RPC

Fig. 6. High-level view of MAUI’s architecture [31]

In addition, Slingshot uses the home server’s reply to check
reliability of the results of available surrogates.

Slingshot presents a good solution for remote execution
control, but similar to the GnC’s system, does not examine
whether task offloading is beneficial in current situation or
not.

E. MAUI

MAUI [31] employs fine-grained offloading (i.e. methods of a
task) to reduce energy consumption of mobile devices. MAUI
supports programs written in managed code environments such
as Microsoft .Net CLR and Java. It provides a graph of
program’s methods and divides them into local and remote
groups to execute. Figure 6 shows a high-level view of the
MAUI’s architecture.

At the mobile device side, MAUI consists of three mod-
ules, (1) an interface to the decision unit residing in the

Client

Surrogate

Application

Scavenger
 Library

Presence
Library

Mobile Code
Execution

Environment

Data
Store

Scavenger
 Front-end

Presence
Daemon

RPC/TCP UDP
Broadcast

Fig. 7. High-level view of Scavenger’s architecture [46]

MAUI server side, (2) a proxy that is responsible to control
a candidate method for offloading, and (3) a profiler that
collects information about program’s energy and data transfer
requirements.

At the server side, MAUI consists of four modules whose
proxy and profiler modules are similar to their counterparts
in the mobile device. The solver provides the call graph
of the program and schedule methods, and the controller is
responsible for checking the available requests and to allocate
them adequate resources.

MAUI uses online profiling to draw a linear model of energy
consumption according to the used processing cycles of each
method. In addition, it uses a history-based approach to predict
the execution time of tasks. However, it does not consider the
effect of input size on execution time of tasks.

F. Scavenger

Scavenger [24], [46] is a cyber foraging system that focuses
on augmenting CPU power of mobile devices and decrease in
the latency of application’s response time. Scavenger presents
a dual adaptive history-based profiling approach to estimate
the execution time of application according to input size and
the architecture of execution location.

The Presence Library shown in Figure 7 is responsible for
surrogate discovery, and the Scavenger Library schedules tasks
and controls remote executions. At the surrogate side, there is
the Scavenger front-end that communicates with the mobile
device through some RPC entry points.

Scavenger first uses the Nbench benchmark suit to measure
a general performance score for mobile device and surrogates
and to get a rough estimation of the processing power of each
machine. Then, after real execution, it uses online profiling

1238 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

to improve the estimations of execution time. It considers the
effect of input size on execution time by keeping the records
of execution time of tasks for different input sizes in separate
buckets if their variations are higher than a certain percentage.

Every surrogate periodically sends its processing power
(PeerStrength) calculated by Nbench and the number
of its running tasks (PeerActivity) to the mobile device.
The surrogate’s current processing power is calculated by
PeerCurrentStrength = PeerStrength/(1 + PeerActivity).

Actually, Scavenger is the only system that considers the
CPU utilization effect. However, the PeerCurrentStrength fac-
tor cannot suitably represent the effect of CPU utilization and
workload because (1) all tasks do not utilize resources equally
also this factor ignores the effect of background processes
running on the operating system itself, (2) the execution
times of different tasks on each architecture are different
and the processing power of surrogates must be calculated
according to the tasks, which is not considered in this factor,
and (3) Scavenger, similar to other mentioned systems, does
not measure exactly the estimation factor and other required
information before task scheduling. Although such a strategy
reduces the scheduling time and decision making’s time, but
it decreases the precision and accuracy of the decisions.

G. Common Problems

Cyber foraging systems try to reduce the cost of running tasks
on mobile devices. Every cyber foraging system must therefore
have a good estimation of the costs of local execution and
remote execution of a task in order to decide whether to offload
the task to a surrogate or not.
All of the above-mentioned works use the online profiling
and history-based approach to predict such costs. Actually,
they monitor the cost of real execution of every task on every
location and use this information to estimate the costs of next
runs. Some researches [7], [31], [56] draw a linear model
of resource consumption (cost) according to the gathered
cyber foraging metrics and some others [46] use the average
of previous costs. Although such an approach requires no
prior knowledge about the environment and almost all cyber
foraging metrics are gathered automatically by the system, it
has some shortcomings.

Firstly, since all required information is measured according
to previous real executions, cost estimation based on profiles
of first runs is not precise. Scavenger uses the Nbench′s score
to improve first estimations, but this is not effective as we
discussed earlier. Secondly, to have a good estimation, some
systems [7], [46], [56] keep records of previously measured
information about the machine and the execution of tasks.
This information can fill up the storage of mobile devices.
Scavenger employs cache eviction policy to alleviate this
problem. Thirdly, when a task has a wide range of input values,
these systems cannot well consider the input data effects on
the execution cost estimation.

Although it seems that the current loads of machines affect
the cost, none of the mentioned systems considers this effect
on estimated cost, except Scavenger.

V. CYBER FORAGING TAXONOMY

Based on available information on existing cyber foraging
systems including those reviewed before in this paper, this
section presents our proposed cyber foraging taxonomy. We
have used the most important recurring features of cyber
foraging systems to categorize and propose this taxonomy.
Figure 8 shows the schema of the cyber foraging taxonomy
that is discussed in the following subsections. Also Table I
shows the place of the discussed cyber foraging systems in
each branch of taxonomy.

A. Offloading Type

Offloading can occur at the start-time, referred to as static
offloading, or at the run-time, referred to as dynamic of-
floading [11], [22]. In static offloading, the programmer or
a middleware partitions the program prior to execution (at
design or installation time). Therefore, at runtime, system
knows which parts of program should be offloaded. However,
due to the expanded diversity of surrogates and environments,
static offloading cannot guarantee to present the best parti-
tioning for all possible situations. Spectra and Chroma are
the most important works that do partitioning before program
execution.

In contrast, dynamic offloading starts to offload tasks when
one of the required resources is insufficient and partitions
the program according to the availability of resources at
runtime. This approach decides on offloading based on current
conditions and is therefore more flexible. It however creates
more overheads on the system relating to latency, profiling
and run-time decision making that can lead to unnecessary
offloading too. Gu et al. [14] and Ou et al. [47], [52] have
used dynamic offloading to improve some of the constraints
of mobile device.

To benefit from both static and dynamic advantages, Huerta-
Canepa and Lee et al. [22] have used a hybrid approach that
minimizes the side effects of profiling and waiting time. How-
ever, their choice does not work on all patterns and in some
cases local execution has better performance than offloading
using their proposed scheme. On the other hand, Murarasu and
Magedanz [11] have presented a middleware layer, between
services and programs, that support reconfiguration of services
and programs statically or dynamically and monitors resource
consumption and manages the offloading to remote services.
Every program executes by a service and there is no need to
partition a program.

B. Offloading Granularity

When the application is not available on the surrogate, in
addition to request (input data), there is a need to offload
related parts of the application to the surrogate too. Referring
to offloading granularity strategy, a cyber-foraging approach
can offload the partition(s) of a program (i.e. fine-grain) [6],
[7], [31], [47], [52], [56], or the whole program (i.e. coarse-
grain) [4], [11], [13], [46]

The first strategy is usually relied on programmers to
specify how to partition a program and how to adapt the par-
titions to the changing environment and network conditions.

SHARIFI et al.: A SURVEY AND TAXONOMY OF CYBER FORAGING OF MOBILE DEVICES 1239

Fig. 8. Taxonomy of cyber foraging approaches

TABLE I
COMPARISON OF CYBER FORAGING SYSTEMS

Metric Spectra Chroma GnC’s System Slingshot MAUI Scavenger

Offloading Type Static Static Static Static Dynamic Dynamic

Offloading Granularity Fine-grained Fine-grained Coarse-grained Coarse-grained Fine-grained Coarse-grained

Parameter of Decision Energy/Latency Latency Energy/Performance Latency Energy Latency

Surrogate Type Stationary/Mobile Stationary/Mobile Stationary Stationary Stationary/Mobile Stationary

Parallel Offloading No Yes No Yes No No

Location of the Solver Mobile device Mobile device - - Stationary Server Mobile device

Remote Execution Aspect Pre-installed RPCs Pre-installed RPCs Virtual machines Virtual machines Mobile code Mobile code

O
ve

rh
ea

d Remote Execution Low Low Low Low Low Low

Initialization Low Low Low Low Low Low

Context Gathering High High High High High High

Support of Live Migration No No Yes Yes No No

Partitioning of an application can be done automatically by
a cyber foraging system [45] or it can be provided by the
programmer [7], [14], [31], [52], [56]. A fine-grain strategy
leads to large energy savings as only the parts that benefit from
remote executions are offload [31]. Fine-grain granularity is
suitable for highly mobile environment(s) [8], wherein mobile
devices move in the environment(s) and larger tasks increase
the probability of task completion failure due to surrogate
disconnection.

In systems with fine grain strategy, such as Spectra, Chroma
and MAUI, due to small size of parts and high communication
overheads, by taking a local view of each part, offloading does
not seem beneficial and the system wrongly decides to execute
all parts locally [31]. Therefore, the system should decide
for all parts together according to their relations. In Spectra
and Chroma, this duty is given to programmers to specify a
set of possible partitions along with their suitable execution

locations, which are called execution plans in Spectra and
tactics in Chroma.

However, some works, consider the relations between parts
to schedule available partitions and to create a graph-based
model. In these works, each vertex indicates a part and
each edge represents the communication cost between two
corresponding vertices. They schedule whole parts together in
a manner that parts with more communication stay together
in a location and minimize the total cost of task execution.
This graph model is usually an NP-Complete problem requir-
ing heuristic solutions. Although, it seems that graph-based
scheduling is optimal, but it is shown that scheduling the
application’s parts as isolated tasks could be more efficient, if
the location of input and output data of the tasks are considered
[23], [46].

Coarse-grain strategies use the migration of whole virtual
machines, processes or requests. This strategy reduces the

1240 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

programmer’s responsibilities because there is no need to
modify programs for remote execution and partition it. Except
for sending the request for service to surrogates that does
not need code migration, in contrast to fine-grain strategies,
the whole program state and code must be sent to a remote
execution environment. In addition, it does not need to con-
sume resources to solve a graph-based model of partitions.
On the other hand, due to the mobility nature of mobile
devices, which increases the disconnection possibility and the
urgency of connecting to a new surrogate and consequently re-
offloading of the whole program to another surrogate, coarse-
grain strategies seem to waste a lot of energy and time.
Furthermore, they increase the probability of leaving the area
in the coverage of surrogates before task completions [23],
[41].

C. Parameter of Decision

The goal of cyber foraging is to confront with resource
constraints of mobile devices. Therefore, available researches
have tried to augment some resources of mobile devices in
terms of effective metrics to achieve more efficient appli-
cation execution. The most important factors that offloading
approaches have considered are as follows:

• Energy Consumption. One of the most important con-
straints of mobile devices is energy consumption because
mobile device’s energy cannot be replenished by itself
[15]. Many researches [7], [21], [26], [31], [38] have con-
sidered energy consumption as a parameter for offloading
decision.

• Memory and Storage. Memory intensive applications
cannot usually run on mobile devices and they need to be
offloaded. Many researches [14], [52] have considered the
availability of memory and storage as another effective
parameter for offloading decision.

• Responsiveness. Offloading decreases execution time
when the processing power of mobile devices is con-
siderably lower than static computers. There are many
researches [6], [7], [23], [52], [56] that have considered
the response time and latency as a major parameter
affecting the offloading decision.

• I/O. Sometimes, the exploitation of more I/O devices
or the improvement of the quality of I/O are the main
reason for offloading, e.g. when displaying a movie on a
bigger screen, playing music on more powerful speakers,
and printing. Some researches [48], [57] have focused on
augmenting I/O as an effective parameter on offloading
decision.

D. Surrogate Type

We can further categorize cyber foraging approaches by their
surrogate type, whether they use static computers or mobile
devices. Generally, most cyber foraging approaches use static
computers as surrogates [4], [9], [42], [46] though there are
some works that use mobile surrogates too [5], [29], [58].

Although powerful stationary computers are considered as
suitable surrogates, considerations such as network topology,
user preferences, and the absence of idle static computers may
guide a cyber foraging system to choose a mobile surrogate

instead. In systems such as Spectra, Chroma and MAUI, the
mobile device could be potentially a surrogate, too. In current
implementation of Scavenger, the mobile device cannot play
the role of the surrogate, duo to some code incompatibilities.
The same limitation applies to GnC’s system as well as to
Slingshot because they use the virtualization technology.

Furthermore, in some cases cloud computers, instead of
nearby computers play the role of the surrogate. Usually, in
contrast to nearby surrogates, using cloud services is not free
and also increases response time and energy consumption of
mobile devices, due to longer distances and lower bandwidth.

E. Offloading Scale

Offloading scale is another feature that varies in different cyber
foraging approaches. In some cases, the cyber foraging system
selects only one surrogate from available surrogates to run
a task and then waits for the result [7], [21], but in some
other works [26], [41], [52] multiple surrogates are used as
the offload locations of a task or even the migration of a
task between surrogates [9]. A reason is to cope with the
mobility nature of mobile devices by increasing the availability
of surrogates in the range. In addition, parallel offloading to
multiple surrogates are used to increase the fault tolerance [50]
and enable the latency control [6], [47], [49], [52], [56].

F. Location of the Solver

Another parameter that branches out of our taxonomy tree of
cyber foraging approaches is the location of solver, the unit
that is responsible for offloading decisions.

Generally, every mobile device has the role of decision
maker and includes a solver, itself [7], [23], [26], [56].
However, in some works [29], [31], the solver is not located
on the mobile device. For example, MAUI creates a call graph
of application, so if the mobile device itself plays the role of
solver, the memory capacity may fill up. In addition, solving
this graph-based model takes time and energy and the mobile
device’s CPU may be 100% utilized. Therefore, there is no
choice except leaving the solver to a stationary computer.
Although locating the solver away from the mobile device
reduces computation cost, it imposes more communication
costs to the mobile device.

In GnC’s system as well as Slingshot there are no such
decision unit and it is supposed that task offloading and remote
execution are better than local execution in every situation.
However, in Slingshot the mobile device and the home server,
in cooperation, control remote execution, while GnC’s system
uses a stationary computer called the service discovery server
to find appropriate surrogates.

G. Remote Execution Aspect

Cyber foraging approaches have different assumptions and
strategies on remote execution of offloaded tasks. Cyber for-
aging approaches can thus be categorized in remote execution
respect by their assumptions for code and data availability,
and their employed strategies.

SHARIFI et al.: A SURVEY AND TAXONOMY OF CYBER FORAGING OF MOBILE DEVICES 1241

1) Code Availability: Kristensen [12], [23] has categorized
the existing task execution approaches into three classes: pre-
installed RPCs [7], [11], [56], system virtual machines [4], [9],
[13], [42], and mobile codes [31], [46]. In the first approach,
the task is preinstall on a surrogate and is ready for service.
Therefore, the overhead of task execution is small, but it does
not work in unknown environments and new surrogates. In
contrast, usage of virtual machines increases the flexibility of
the system, and surrogates do not need to prepare in advance.
However, the overhead of initializing a compatible virtual
machine is high. The third approach has the advantage of
two previous approaches. If a surrogate does not have the
task already, the application code is migrated to the surrogate,
compiled, and installed in the surrogate. The overhead of this
approach is considerably lower than preparing or bootstrap-
ping the compatible virtual machine, while application code
size is far lower than a virtual machine and compile and
deployment time is far faster than bootstrapping or creating
a virtual machine. In addition, after the first installation of
the application, this approach works just like pre-installed
RPCs. However, it enforces the availability of the compatible
application code.

2) Data Availability: To execute a task, some related infor-
mation, such as input data, must be available in the execution
environment. Assumptions about data availability or strategies
for preparing any required data vary among the cyber foraging
approaches. The employed assumptions and strategies about
data availability fall into three groups. In the first group,
data is already available on the surrogate [24]. For example,
suppose two tasks A and B where the A’s output is the B’s
input. If a surrogate has executed task A, it has the B’s input
and it does not need data migration. In the second group,
information is transferred from a mobile device to a surrogate
[21], [26], [56]. In the third group, necessary information
is captured from an old surrogate [9]. This strategy can be
extended by fetching the required data from the Internet. It can
also be improved by using forecasting methods and context
information such as user’s location and diary to foresee the
next tasks or next available surrogates and prepare to transfer
essential information before starting to run the next task.

H. Live Migration Support

Support of live migration means if in the middle of remote task
execution, the connection between the mobile device and the
corresponding surrogate is disconnected, the cyber foraging
system could propose a mechanism to save the current state of
process and continue its execution in another location. Among
studied research, only those [4], [9], [11], [13], [42] using the
virtualization technology provide live migration.

I. System Overhead

Cyber foraging systems have their own overheads including:
(1) context gathering and scheduling, (2) initialization of
cyber foraging mechanism, and (3) remote execution. The
first part is attributed to the overheads of monitoring resource
availability, predicting resource demands, assessing costs and
making decisions on task execution location. GnC’s system
and Slingshot are the only cyber foraging systems that do

not have this overhead. The overhead of initializing the cyber
foraging mechanism refers to the cost of preparing each
surrogate to execute each task at the first time. Due to the
use of pre-installed RPCs in Spectra and Chroma, and mobile
code in MAUI and Scavenger, their initialization overhead
is low, in contrast to Slingshot and GnC’s system that have
high initialization overhead because of using the virtualization
technology. The remote execution overhead relates to the
overheads of running the task in the surrogate until delivering
the result to the mobile device in the next runs, excluding the
first and second above-mentioned overheads. This overhead is
almost low in all mentioned cyber foraging systems.

VI. CONCLUSION AND DISCUSSION

The ubiquity of mobile devices has allured many users to
benefit from their processing abilities too. However, mobile
devices are generally more resource constrained than static
computers for running complex and high computational ap-
plications. Given this background and line of thought, we
studied one of the most usable solutions called cyber foraging
to augment resource limitations of mobile devices and make
the mobile devices amenable for casual use as processing
devices too. Cyber foraging is offloading the whole program or
a part of it from mobile devices to the nearby static computers
(surrogate).

We studied and categorized the effective metrics influencing
cyber foraging approaches. In addition, we surveyed six well-
known and most credible existing cyber foraging systems
and presented our taxonomy of cyber foraging approaches
based on recurring features of most common and notable
related works on cyber foraging. We categorized our proposed
taxonomy based on offloading type that is either static or
dynamic, offloading granularity, the resource constraint that is
considered by approaches, surrogate type which can be static
or mobile, scalability of offloading, location of the solver,
availability of code and data on the surrogates, support of
live migration, and imposed overheads.

Cyber foraging is a good solution to supplement the re-
source impoverished of mobile devices, but it has its lim-
itations too. Firstly, some surrogates should be available
and eager to share their resources with others via wireless
networks. Secondly, there are several security issues in mobile
networks [59], [60] and cyber foraging may intensify security
and data confidentiality issues. Thirdly, cyber foraging is only
applicable to transferable tasks while there are some tasks that
are not transferable as discussed in Section II. In addition,
cyber foraging may not be beneficial to small tasks due to
relatively high communication overhead. Fourthly, although
several approaches for offloading applications from mobile
devices to static computers have been proposed in recent years,
cyber foraging systems have a long way to go to provide all
mentioned steps including surrogate discovery, context gath-
ering, partitioning, scheduling, and remote execution control,
and become deployable in real world. This becomes more on
sight if a strong development support is provided in a way that
even a novice programmer becomes capable to enable cyber
foraging support.

According to our survey and the issues raised in this paper,
three main areas in cyber foraging grant future research. First,

1242 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

to make a good decision about the execution location of each
task, it is important to have a good estimation of execution
cost on every location before real execution. Therefore, there
is a need to estimate the cost for local and remote executions
in a more precise and reliable manner, considering the effect
of input size of the task and the current load of machines (i.e.
the mobile device and available surrogates). As stated before,
available researches usually use history-based approaches to
predict the cost and cannot consider well the current load
and input data effects on the execution cost estimation. It
seems that the composition of these techniques and some pre-
knowledge about application structure and specifications can
improve the estimations.

The second challenge is context gathering. Current available
researches of cyber foraging gather context information and
cyber foraging metrics periodically, instead of just before
execution of task that contains the real and precise context
information. Periodic profiling removes the overhead of con-
text gathering just before executing the task and increases
the performance. However, it has two shortcomings: (1) it
decreases the accuracy of decisions that are based on historical
data and (2) if there is no demand to execute a task on the
mobile device for a long time, periodic context gathering
is useless and just burdens the system with unnecessary
overhead. A solution to this problem could be the mixture of
static and dynamic context gathering. All context information
is gathered at first time and only variable information is
updated just before real execution. This solution needs to
recognize variable information and find a way to gather them
quickly and precisely.

Offloading granularity is the third challenge that requires
further research. Coarse-grain offloading reduces the burden
off the programmers’ shoulders and reduces the overhead
of partitioning and scheduling. However, it is less akin to
newly envisaged real world applications running in highly
mobile environments. New approaches for coarse-grain and
fine-grain orchestrated offloading according to the nature and
specifications of the residing environment of mobile devices
and surrogates are required.

REFERENCES

[1] UN, “The global partnership for development at a critical juncture,”
United Nations, MDG GAP Task Force Report, 2010.

[2] D. Chalmers and M. Sloman, “A survey of quality of service in mobile
computing environments,” IEEE Commun. Surveys Tutorials, vol. 2,
no. 2, pp. 2–10, 1999.

[3] M. Perry, K. O’hara, A. Sellen, B. Brown, and R. Harper, “Dealing
with mobility: Understanding access anytime, anywhere,” ACM Trans.
Computer-Human Interaction (TOCHI), vol. 8, no. 4, pp. 323–347,
2001.

[4] M. Satyanarayanan, P. Bahl, R. Cceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[5] J. Oh, S. Lee, and E. Lee, “An adaptive mobile system using mobile grid
computing in wireless network,” in International Conference on Com-
putational Science and Its Applications (ICCSA 2006), Glasgow,UK,
2006, pp. 49–57.

[6] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb, “Simpli-
fying cyber foraging for mobile devices,” in 5th USENIX International
Conference on Mobile Systems, Applications and Services (MobiSys),
San Juan, Puerto Rico, 2007, pp. 272–285.

[7] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance,
energy, and quality in pervasive computing,” in 22nd International
Conference on Distributed Computing Systems (ICDCS02), Vienna,
Austria, 2002, pp. 217–226.

[8] M. D. Kristensen, “Enabling cyber foraging for mobile devices,” in 5th
MiNEMA Workshop, Magdeburg, Germany, 2007, pp. 32–36.

[9] Y. Y. Su and J. Flinn, “Slingshot: Deploying stateful services in
wireless hotspots,” in 3rd International Conference on Mobile Systems,
Applications, and Services, New York, NY, USA, 2005, pp. 79–92.

[10] M. D. Kristensen and N. O. Bouvin, “Developing cyber foraging appli-
cations for portable devices,” in 2nd IEEE International Interdisciplinary
Conference on Portable Information Devices, Garmisch-Partenkirchen,
Germany, 2008, pp. 1–6.

[11] A. F. Murarasu and T. Magedanz, “Mobile middleware solution for
automatic reconfiguration of applications,” in 6th International IEEE
Conference on Information Technology, Las Vegas, USA, 2009, pp.
1049–1055.

[12] J. Porras, O. Riva, and M. D. Kristensen, Dynamic Resource Manage-
ment and Cyber Foraging. Berlin And Heidelberg: Springer, 2009,
ch. 16, pp. 349–368.

[13] B. Chun and P. Maniatis, “Augmented smartphone applications through
clone cloud execution,” in 12th Workshop on Hot Topics in Operating
Systems (HotOS), Monte Verita, Switzerland, 2009.

[14] X. Gu, A. Messer, I. Greenbergx, D. Milojicic, and K. Nahrstedt, “Adap-
tive offloading for pervasive computing,” IEEE Pervasive Computing
Mag., vol. 3, no. 3, pp. 66–73, 2004.

[15] M. Satyanarayanan, “Avoiding dead batteries,” IEEE Pervasive Comput-
ing, vol. 4, no. 1, pp. 2–3, 2005.

[16] R. K. Balan, “Powerful change part 2: Reducing the power demands of
mobile devices,” IEEE Pervasive Computing, vol. 3, no. 2, pp. 71–73,
2004.

[17] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
and K. R. Walker, “Agile application-aware adaptation for mobility,”
in 16th ACM Symp. Operating Systems Principles (SOSP), Saint-Malo,
1997, pp. 276–287.

[18] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low
power embedded operating systems,” in 18th Symp. Operating System
Principles (SOSP), Banff, Canada, 2001, pp. 89–102.

[19] M. Satyanarayanan, “Pervasive computing: Vision and challenges,”
IEEE Personal Commun., vol. 8, no. 4, pp. 10–17, 2001.

[20] T. E. Starner, “Powerful change part 1: Batteries and possible alterna-
tives for the mobile market,” IEEE Pervasive Computing, vol. 2, no. 4,
pp. 86–88, 2003.

[21] M. Othrnan and S. Hailes, “Power conservation strategy for mobile
computers using load sharing,” Mobile Computing and Communications
Review, vol. 2, no. 1, pp. 19–26, 1998.

[22] G. Huerta-Canepa and D. Lee, “An adaptable application offloading
scheme based on application behavior,” in 22nd International Confer-
ence on Advanced Information Networking and Applications Workshops
(AINAW2008), Gino-wan City, Okinawa, Japan, 2008, pp. 387–392.

[23] M. D. Kristensen, “Empowering mobile devices through cyber for-
aging:the development of scavenger, an open mobile cyber foraging
system,” Ph.D. dissertation, Aarhus University, 2010.

[24] M. D. Kristensen, “Scavenger: Transparent development of efficient
cyber foraging applications,” in IEEE International Conference on
Pervasive Computing and Communications (PerCom), Mannheim, Ger-
many, 2010, pp. 217–226.

[25] S. Kalasapur and M. Kumar, “Resource adaptive hierarchical organi-
zation in pervasive environments,” in 1st International Conference on
Communication Systems and Networks, Bangalore, 2009, pp. 9–16.

[26] E. Park, H. Shin, and S. J. Kim, “Selective grid access for energy-
aware mobile computing,” Lecture Notes in Computer Science(LNCS),
vol. 4611, pp. 798–807, 2007.

[27] L. Chunlin and L. Layuan, “Energy constrained resource allocation
optimization for mobile grids,” Journal of Parallel and Distributed
Computing, vol. 70, no. 3, pp. 245–258, 2010.

[28] O. Storz, A. Friday, and N. Davies, “Towards ’ubiquitous’ ubiquitous
computing: an alliance with the grid,” in 1st Workshop on System Sup-
port for Ubiquitous Computing Workshop (Ubisys 2003) in association
with 5th International Conference on Ubiquitous Computing, Seattle,
2003.

[29] Y. Begum and M. Mohamed, “A DHT-based process migration policy
for mobile clusters,” in 7th International Conference on Information
Technology, Las Vegas, 2010, pp. 934–938.

[30] B. Chun and P. Maniatis, “Dynamically partitioning applications be-
tween weak devices and clouds,” in 1st ACM Workshop on Mobile Cloud
Computing and Services (MCS 2010), San Francisco, 2010, pp. 1–5.

[31] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in 8th international conference on Mobile systems,
applications, and services (ACM MobiSys’10), San Francisco, USA,
2010, pp. 49–62.

SHARIFI et al.: A SURVEY AND TAXONOMY OF CYBER FORAGING OF MOBILE DEVICES 1243

[32] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” IEEE Computer, vol. 43, no. 4, pp. 51–56,
2010.

[33] R. Buyya, S. Yeo, Chee, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[34] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation
offloading framework for smartphones,” in 3rd International Conference
on Mobile Computing, Applications, and Services (MobiCASE), Santa
Clara, CA, USA, 2010.

[35] R. Kemp, et al., “The smartphone and the cloud: Power to the user,” in
International Workshop on Mobile Computing and Clouds (MobiCloud),
Santa Clara, CA, USA, 2010.

[36] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
elastic execution between mobile device and cloud,” in 6th conference
on Computer Systems (EuroSys), Salzburg, Austria, 2011.

[37] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Unleashing
the power of mobile cloud computing using ThinkAir,” 2011.

[38] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen, and
H. Bal, “eyeDentify: Multimedia cyber foraging from a smartphone,” in
IEEE International Symposium on Multimedia (ISM2009), San Diego,
2009, pp. 392–399.

[39] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in 2nd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), Boston, MA, USA, 2010.

[40] M. Nkosi and F. Mekuria, “Cloud computing for enhanced mobile health
applications,” in IEEE 2nd International Conference on Cloud Comput-
ing Technology and Science (CloudCom), Indianapolis, IN, USA, 2010.

[41] M. D. Kristensen, “Execution plans for cyber foraging,” in 1st Workshop
on Mobile Middleware: Embracing the Personal Communication Device,
Leuven, Belgium, 2008, pp. 87–92.

[42] S. Goyal and J. Carter, “A lightweight secure cyber foraging infras-
tructure for resource-constrained devices,” in 6th IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA ’04), English
Lake District, UK, 2004, pp. 186–195.

[43] M. D. Kristensen, “Scavenger - mobile remote execution,” University
of Aarhus, Technical Report DAIMI PB-587, 2008.

[44] C. N. Ververidis and G. C. Polyzos, “Service discovery for mobile ad hoc
networks: A survey of issues and techniques,” IEEE Commun. Surveys
Tutorials, vol. 10, no. 3, pp. 30–45, 2008.

[45] G. C. Hunt and M. L. Scott, “The coign automatic distributed parti-
tioning system,” in 3rd Symposium on Operating Systems Design and
Implementation (OSDI’99), New Orleans, 1999, pp. 187–200.

[46] M. D. Kristensen and N. O. Bouvin, “Scheduling and development
support in the scavenger cyber foraging system,” Pervasive and Mobile
Computing, vol. 1, no. 6, pp. 677–692, 2010.

[47] S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint partitioning
algorithm for offloading in pervasive systems,” in 4th Annual IEEE
International Conference on Pervasive Computing and Communications
(PERCOM06), Pisa, Italy, 2006, pp. 116–125.

[48] X. Song and U. Ramachandran, “MobiGo: A middleware for seamless
mobility,” in 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’2007), Daegu,
2007, pp. 249–256.

[49] R. K. Balan, “Simplifying cyber foraging,” PhD Thesis, Carnegie Mellon
University, 2006.

[50] X. Zhang, S. Jeong, A. Kunjithapatham, and S. Gibbs, “Towards an
elastic application model for augmenting computing capabilities of
mobile platforms,” in 3rd International ICST Conference on Mobile
Wireless Middleware, Operating Systems, and Applications (Mobile-
Ware), Chicago, USA, 2010, pp. 161–174.

[51] J. Zhang and R. J. Figueiredo, “Application classication through mon-
itoring and learning of resource consumption patterns,” in 20th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
Rhodes Island, 2006.

[52] S. Ou, K. Yang, and Q. Zhang, “An efficient runtime offloading
approach for pervasive services,” in IEEE Wireless Communications and
Networking Conference (WCNC2006), Las Vegas, 2006, pp. 2229–2234.

[53] J. Krogstie, “Requirement engineering for mobile information systems,”
in 7th International Workshop on Requirements Engineering, Interlaken,
Switzerland, 2001.

[54] J. Flinn, D. Narayanan, and M. Satyanarayanan, “Self-tuned remote
execution for pervasive computing,” in 8th IEEE Workshop Hot Topics
in Operating Systems, Schloss Elmau, Germany, 2001, pp. 61–66.

[55] R. K. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and
H. Yang, “The case for cybef foraging,” in 10th Workshop on ACM

SIGOPS European Workshop: beyond the PC, New York, NY, USA,
2002.

[56] R. K. Balan, M. Satyanarayanan, S. Park, and T. Okoshi, “Tactics-based
remote execution for mobile computing,” in 1st International Conference
on Mobile Systems, Applications and Services, San Francisco, 2003, pp.
273–286.

[57] X. Song, “Seamless mobility in ubiquitous computing environments,”
PhD Thesis, Georgia Institute of Technology, 2008.

[58] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in 1st ACM Workshop on Mobile Cloud Computing and
Services: Social Networks and Beyond(MCS10), San Francisco, 2010,
pp. 1–5.

[59] D. Djenouri, L. Khelladi, and N. Badache, “A survey of security issues in
mobile ad hoc and sensor networks,” IEEE Commun. Surveys Tutorials,
vol. 7, no. 4, pp. 2–28, 2005.

[60] M. N. Lima, A. L. d. Santos, and G. Pujolle, “A survey of survivability
in mobile ad hoc networks,” IEEE Commun. Surveys Tutorials, vol. 11,
no. 1, pp. 66–77, 2009.

Mohsen Sharifi is an Associate Professor of Software Engineering currently
with the School of Computer Engineering of Iran University of Science and
Technology. He directs the distributed systems research group and laboratory
in the school. His main interest is in the development of kernel level and
middleware level distributed system software for use in mission critical
applications requiring dependable high performance computing capabilities.
He received his B.Sc., M.Sc. and Ph.D. in Computer Science from the
University of Manchester in United Kingdom.

Somayeh Kafaie received her B.Sc. in Computer Engineering (Software)
from Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
and her M.Sc. in Computer Engineering (Software) from Iran University
of Science and Technology, in 2007 and 2011, respectively. Her research
interests include energy-efficient systems and distributed computing especially
pervasive and mobile computing.

Omid Kashefi received his B.Sc. and M.Sc. in Computer Engineering
(Software) from the School of Computer Engineering of Iran University of
Science and Technology in 2006 and 2009, respectively. His main research
interests include distributed systems, operating systems, and virtualization.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

