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Abstract: Antimicrobial resistance (AMR) is an escalating global health threat, often driven by the
horizontal gene transfer (HGT) of resistance genes. Detecting AMR genes and understanding their
genomic context within bacterial populations is crucial for mitigating the spread of resistance. In this
study, we evaluate the performance of three sequence alignment tools—Bandage, SPAligner, and
GraphAligner—in identifying AMR gene sequences from assembly and de Bruijn graphs, which
are commonly used in microbial genome assembly. Efficiently identifying these genes allows for
the detection of neighboring genetic elements and possible HGT events, contributing to a deeper
understanding of AMR dissemination. We compare the performance of the tools both qualitatively
and quantitatively, analyzing the precision, computational efficiency, and accuracy in detecting
AMR-related sequences. Our analysis reveals that Bandage offers the most precise and efficient
identification of AMR gene sequences, followed by GraphAligner and SPAligner. The comparison
includes evaluating the similarity of paths returned by each tool and measuring output accuracy
using a modified edit distance metric. These results highlight Bandage’s potential for contributing
to the accurate identification and study of AMR genes in bacterial populations, offering important
insights into resistance mechanisms and potential targets for mitigating AMR spread.

Keywords: antimicrobial resistance (AMR); sequence alignment; assembly graphs; Bandage; SPAligner;
GraphAligner

1. Introduction

Recent advancements in genome sequencing technology have significantly expanded
our ability to study microbial communities at an unprecedented scale. With high-throughput
sequencing, it is now possible to sequence entire microbiomes, leading to the availability
of reference genomes and improved insights into microbial interactions. However, these
technological breakthroughs come with their own set of challenges. The vast amount of
data generated through short-read sequencing often provide fragmented DNA sequences,
requiring sophisticated assembly methods to reconstruct longer, more meaningful genomic
sequences [1]. These methods result in large assembly graphs, from which extracting
precise genomic information is critical, particularly in understanding complex microbial
behaviors such as the spread of antimicrobial resistance (AMR).

One of the most pressing issues in global health today is the rise of AMR [2] with an
estimated 1.27 million deaths attributed to AMR in 2019 alone [3]. Horizontal gene transfer
(HGT) of mobile genetic elements (MGEs), such as plasmids and genomic islands, can
drive the spread of AMR between organisms and habitats [4]. An AMR gene’s associated
neighbouring genes can play key roles in its function [5] and likelihood of undergoing
HGT [6,7]. Identifying and tracking the presence of these AMR genes within microbial
communities is a crucial step toward combating the crisis. This research focuses on evalu-
ating state-of-the-art sequence alignment tools, particularly their efficiency and accuracy
in aligning sequences within complex assembly graphs. These tools are indispensable
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for identifying AMR genes, their neighboring genes, and the genomic context in which
horizontal gene transfer occurs, offering vital insights into how resistance genes spread.

This study aims to compare popular sequence alignment tools such as Bandage [8],
SPAligner [9], and GraphAligner [10], all of which are commonly used in the analysis of
de Bruijn graphs created during genome assembly. By evaluating these tools, this study
seeks to provide a comprehensive analysis of their strengths and limitations with the goal
of identifying the most efficient and accurate tool for the task.

The impact of this work extends beyond tool comparison. By improving the precision
of AMR gene identification and mapping through better software selection, we contribute
directly to the efforts tackling the AMR crisis. The insights from this study can enhance the
detection of horizontal gene transfer events, thus informing public health strategies aimed
at mitigating the spread of resistance.

2. Background

In genomic and metagenomic analyses, assemblers typically utilize de Bruijn graphs
as a core structure to represent the relationships between DNA sequence reads. De Bruijn
graphs are constructed from reads, which are sequences of base pairs corresponding
to all or part of a single DNA (or multiple DNAs in case of metagenomic assembly).
In this paradigm, the reads are broken into substrings of fixed length, known as k-mers.
The nodes in the graph represent the k − 1 prefixes and suffixes of these k-mers, while the
edges correspond to the k-mers themselves. Instead of aligning reads directly, overlaps
between sequences are inferred based on shared k-mers [11]. Many assemblers generate
a simplified and compact version of the de Bruijn graph, known as the assembly graph,
as the final output.

While there are many tools to identify AMR genes in large sequences such as contigs
(i.e., a contiguous sequence of DNA that is assembled from an assembly graph), there are
relatively few tools that can perform this task within an assembly graph. In an assembly
graph, the sequence of an AMR gene might be spread across multiple connected nodes,
representing a path in the graph. Traversing and identifying paths in such graphs is a
more complex task than searching through linear sequences of contigs. In the following,
we discuss three sequence alignment tools that can be used to identify AMR genes in an
assembly graph.

Bandage [8] is primarily used for visualizing and interacting with assembly graphs.
It also includes the ability to perform BLAST [12] searches directly within the graphical
interface, which adds functionality to traditional BLAST by enabling searches through
assembly graph nodes. Bandage builds a BLAST database from all the nodes in the graph,
and for each query, it attempts to find a path through the graph that maximizes the coverage
of the query. In addition to visualization, Bandage’s integration of BLAST functionality
makes it a versatile tool for graph-based sequence analysis.

Saint Petersburg Aligner (SPAligner) [9] is a tool designed for aligning nucleotide
and amino acid sequences against assembly graphs. SPAligner identifies regions of high
nucleotide identity between the query sequence and the graph and extends these regions
into semi-global alignments. In semi-global alignment, gaps are allowed at the beginning
and/or the end of the sequence, making it suitable for aligning sequences that may only
overlap partially. If two sequences are related over the entire length of their overlapping
regions, semi-global alignment is used to determine the optimal alignment. SPAligner has
proven to be efficient in handling this type of alignment task within assembly graphs.

GraphAligner [10] is another alignment tool that specializes in aligning reads to
sequence graphs. GraphAligner can work with a variety of graph types and is partic-
ularly well-suited for handling the complex structures found in long-read sequencing
data. By aligning reads directly to the graphs, GraphAligner facilitates the identification of
complex structural variants and improvements in assembly accuracy.

In this study, we compare these tools—Bandage, SPAligner, and GraphAligner—
focusing on their ability to accurately detect sequences in assembly graphs, particularly
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in the context of antimicrobial resistance (AMR) gene detection. All three tools utilize de
Bruijn graphs in their analysis. Specifically, Bandage accepts de novo assembly graphs in
LastGraph (Velvet), FASTG (SPAdes), Trinity.fasta, ASQG, and GFA formats. GraphAligner
works with genome graphs in GFA and VG formats, while SPAligner accepts assembly
graphs in GFA format. We aim to evaluate their performance in terms of accuracy and
computational efficiency, providing insights into their respective strengths and limitations.
Table 1 summarizes the key points about these tools. As shown in the table, Bandage
provides a way to visualize the graph as well as sequence alignment. While SPAligner
and GraphAligner have similar usage in terms of sequence alignment, they use different
algorithms under the hood for this purpose.

Table 1. This table describes the differences between the three tools in terms of usage and algorithms.

Tool Main Usage Alignment Algorithm

Bandage Primarily to visualize and interact with assembly graphs Uses BLAST to find paths within the assembly
graph based on the query sequence.

SPAligner Align diverged molecular sequences against
assembly graphs

Uses Burrows–Wheeler aligner (BWA) to detect
longer anchor alignments. It also uses the Edlib

library to calculate the optimal alignment.

GraphAligner Align long reads to sequence graphs Uses BWA to detect longer anchor. It also uses the
bit vector alignment extension algorithm.

3. Materials and Methods

In this study, we evaluate the performance of three sequence alignment tools—Bandage
(v0.9.0), SPAligner (v3.15.5), and GraphAligner (v1.0.17)—for aligning sequences in assem-
bly graphs. We compare these tools in terms of time and memory usage. Additionally, we
assess the accuracy of the output sequences identified by each tool across various datasets,
as summarized in the flowchart in Figure 1.

Figure 1. This flowchart shows the steps used to compare the results from the output file for
each graph.

Each tool receives the assembly graph (in GFA [13] format) generated by tools such
as metaSPAdes [14], BCALM [15], or megahit [16]. In these assembly graphs, fragments
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of DNA sequences are presented as nodes (i.e., segments), while overlapping segments
are connected via edges. Each tool also receives a list of AMR genes as input. The tools
are expected to return the path(s) representing each AMR gene (if identified) within the
graph. For example, in Figure 2, the query sequence is identified as a path starting from the
90th nucleotide at node n2 and will end at the 80th nucleotide at node n3. By analyzing the
output generated by Bandage, SPAligner, and GraphAligner, we have identified several
common features for comparison. These include:

• The length of the query sequence;
• The starting and ending positions of the aligned sequence in the graph;
• The specific nodes involved in the path through the graph;
• The identified output sequence.

These shared characteristics serve as the basis for evaluating the performance and
effectiveness of the tools in identifying sequences within genome assembly graphs.

Figure 2. Sequence alignment in the assembly graph for a query sequence, where the yellow part in
the graph represents the output path found by a given tool for the query.

3.1. Dataset

As detailed in Table 2, we conducted experiments on assembly graphs of varying sizes
generated by metaSPAdes v3.14.1 [14] from the following datasets which range from small
to large:

• 1_1_1: A simulated metagenomic dataset generated using one strain each from Es-
cherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, retrieved from RefSeq.
The reads were simulated using ART V2.5.8 [17] on the HiSeq 2500 platform with a
read length of 150 bp, an insert size of 500 bp, and fold coverage of 20.

• CAMI_M_2 and CAMI_H_1: These datasets are part of the Critical Assessment of
Metagenome Interpretation (CAMI) [18] study and represent medium and large-sized
assembly graphs, offering real-world challenges for metagenome analysis.

• ERR1713331: A metagenomic dataset derived from urban sewage from Albania ,
published and sequenced using the Illumina HiSeq platform [19].

3.2. Experiment

For each dataset, AMR sequences identified in the dataset were used as queries.
The three tools—Bandage, SPAligner, and GraphAligner—were executed to find these
AMR sequences within the respective assembly graphs. All experiments were run on an
iMac with an Apple M1 chip and 8 GB of memory.

For the experiments, default parameter values were used for all tools, except for
minmeanid in Bandage. The default identity threshold for GraphAligner was set to 0.66, so
to maintain consistency and ensure a fair comparison, we adjusted the minmeanid value for
Bandage to 0.66. We compared the results from each tool in three key areas:

• Time: The total time taken for each tool to align the query sequences.
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• Memory Usage: The memory footprint of each tool during the alignment process.
• Accuracy: The accuracy of the alignment was assessed by comparing the edit distance

between the query sequence and the sequences returned by each tool.

Table 2. Datasets simulated from RefSeq (1_1_1), the CAMI Challenge [18], and a real metagenomic
sample selected from the Global Urban Sewage AMR Monitoring Project [19].

Name Description Number of AMR Genes Graph Size

1_1_1

Simulated from E. coli SMS-3-5
(NC_010498, NC_010488,
NC_010485, NC_010486,

NC_010487) , K. pneumoniae
MGH 78578 (NC_009648,
NC_009649, NC_009650,
NC_009651, NC_009652,

NC_009653) , S. aureus Mu50
(NC_002758, NC_002774)

(accessed on 8 October 2024)

378 2529 nodes and 2406 edges

CAMI_M_2 CAMI Challenge with
132 genomes 54 396,319 nodes and

101,235 edges

CAMI_H_1 CAMI Challenge with
596 genomes 698 939,234 nodes and

127,706 edges

ERR1713331 Albania (ERR1713331)
(accessed on 8 October 2024) 355 3,852,226 nodes and

1,256,367 edges

The accuracy metric provides a quantitative measure of how well each tool aligns
the input query sequences within the assembly graph, helping us determine their overall
performance in handling genome assembly tasks involving AMR gene detection.

4. Results

In this section, we present the analysis of the results from Bandage, SPAligner, and
GraphAligner. The analysis is structured into three main subsections:

1. Path Comparison: We compare the paths returned by the three tools, focusing on the
start and end positions as well as the nodes involved in each path for all datasets.

2. Time and Memory Consumption: We compare the time and memory usage of each
tool across the different datasets.

3. Accuracy Evaluation: We assess the accuracy of the sequences returned by each tool
by comparing them to the query sequences.

4.1. Path Comparison

For each dataset, we combined the query sequences into a single file. This file, along
with the corresponding assembly graph, was used as input for each tool. The outputs were
compared pairwise by examining the start position, end position, and the list of nodes
involved in the paths.

The comparison of paths returned by each pair of tools was categorized as follows:

• Full: The start position, end position, and node list are identical in the paths returned
by both tools.

• Partial: The paths returned by the tools show some meaningful similarities but differ
in either the start or end position (or both), while still covering similar regions of
the graph.

• Different: The paths differ entirely in terms of start position, end position, and the
nodes involved.

The results of the comparison for each dataset, as shown in Tables 3–6, demonstrate
that Bandage and GraphAligner return the most similar outputs.

https://www.ncbi.nlm.nih.gov/nuccore/NC_010498
https://www.ncbi.nlm.nih.gov/nuccore/NC_010488
https://www.ncbi.nlm.nih.gov/nuccore/NC_010485
https://www.ncbi.nlm.nih.gov/nuccore/NC_010486
https://www.ncbi.nlm.nih.gov/nuccore/NC_010487
https://www.ncbi.nlm.nih.gov/nuccore/NC_009648
https://www.ncbi.nlm.nih.gov/nuccore/NC_009649
https://www.ncbi.nlm.nih.gov/nuccore/NC_009650
https://www.ncbi.nlm.nih.gov/nuccore/NC_009651
https://www.ncbi.nlm.nih.gov/nuccore/NC_009652
https://www.ncbi.nlm.nih.gov/nuccore/NC_009653
https://www.ncbi.nlm.nih.gov/nuccore/NC_002758
https://www.ncbi.nlm.nih.gov/nuccore/NC_002774
https://www.ebi.ac.uk/ena/browser/view/ERR1713331
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Table 3. The percentage of each category for 1_1_1 in pair comparison of the tools.

Tool Pair Full Partial Different

Bandage VS
SPAligner 57.9 7.2 34.9

Bandage VS
GraphAligner 93.9 2.1 4.0

SPAligner VS
GraphAligner 57.7 4.8 37.6

Table 4. The percentage of each category for CAMI_M_2 in pair comparison of the tools.

Tool Pair Full Partial Different

Bandage VS
SPAligner 83.3 0 16.7

Bandage VS
GraphAligner 63 20.3 16.7

SPAligner VS
GraphAligner 0 85.2 14.8

Table 5. The percentage of each category for CAMI_H_1 in pair comparison of the tools.

Tool Pair Full Partial Different

Bandage VS
SPAligner 0 94.5 5.5

Bandage VS
GraphAligner 71.0 24.0 5.0

SPAligner VS
GraphAligner 0 95.3 4.7

Table 6. The percentage of each category for real sample in pair comparison of the tools.

Tool Pair Full Partial Different

Bandage VS
SPAligner 0 63.8 36.2

Bandage VS
GraphAligner 22.1 23.5 54.4

SPAligner VS
GraphAligner 0 63.1 36.9

4.2. Time Comparison

Figure 3 provides a visual representation of the time taken by each tool for sequence
alignment. As shown in this figure, Bandage consistently took the shortest time to align all
sequences across all datasets. With the exception of the 1_1_1 dataset, SPAligner generally
required the longest time to complete sequence alignment.

4.3. Memory Consumption

Memory usage across the tools is displayed in Figure 4. Bandage consistently used
the smallest amount of memory in all cases. Except for the 1_1_1 dataset, GraphAligner
consumed the most memory among the tools. The memory consumption for each tool
during the alignment process is shown in the plots below.
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Figure 3. Execution time of the tools for each dataset.

Figure 4. Memory consumption of the tools for each dataset.

4.4. Measuring Match Rate

To evaluate the quality of the sequences produced by each tool, we measured the
similarity between the target query sequence and the output sequences generated by
the three tools. This similarity was quantified using the edit distance, which counts the
minimum number of changes (insertions, deletions, or substitutions) required to transform
one sequence into another [20].

To adapt the edit distance metric to our specific needs, we normalized it by dividing
it by the length of the sequences (specifically, the maximum length of the two sequences).
Additionally, since we are focusing on sequence similarity rather than dissimilarity, we
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subtract the normalized value from 1. This adjustment ensures that a higher value corre-
sponds to greater similarity between sequences. This new metric, referred to as match_rate,
was calculated using the following formula:

match_rate = 1 − edit_Distance
max(length(targetSequence), length(output))

(1)

The closer the match_rate is to 1, the more similar the output sequence is to the target
query sequence. For queries where Bandage returned multiple paths and sequences, we
selected the path with the highest confidence to ensure consistency in the comparison.

As shown in Figure 5, the percentage of sequences with different match_rate values
for each tool and dataset demonstrates that Bandage achieved the highest match_rate. This
indicates that Bandage outperforms the other two tools, frequently extracting sequences
from the graph that were the closest to the query AMR sequences (in many cases, identical).
In the 1_1_1 dataset, GraphAligner produced the second most accurate sequences. However,
for the CAMI_M_2 and real datasets, SPAligner outperformed GraphAligner in terms of
accuracy. For the CAMI_H_1 dataset, both Bandage and GraphAligner returned sequences
with match_rates mostly around 0.5, indicating a moderate level of accuracy. In contrast,
SPAligner produced a significant number of sequences that did not match the target
sequences at all.

Figure 5. The percentage of sequences with different values of match_rate for each software
and dataset.

Figure 6 presents the average match_rate of each tools across all datasets, further
emphasizing Bandage’s superior performance.
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Figure 6. The average match_rate for each software and dataset.

5. Conclusions and Future Work

In this study, we evaluated the performance of three widely used sequence alignment
tools—Bandage, GraphAligner, and SPAligner—with a focus on their ability to detect
antimicrobial resistance (AMR) genes within assembly graphs. To evaluate the performance
of these tools, we reconstructed sequences from the identified paths and compared them
with the original AMR gene sequences. We assessed their performance in terms of accuracy,
run-time, and memory consumption across datasets of varying sizes, ranging from small
(1_1_1) to medium (CAMI_M_2) to large (CAMI_H_1 and real-world datasets). To measure
the accuracy of their results, we introduced the match_rate metric, which quantifies the
similarity between the query sequence and the output sequence.

Comparison of the accuracy of each tool, using the match_rate metric, confirms that
Bandage offers the most accurate identification of AMR genes, with sequences most
closely matching the AMR gene queries. Additionally, Bandage proved to be the most
efficient in terms of both time and memory usage, making it the best overall tool for
AMR gene detection in assembly graphs. GraphAligner generally followed Bandage in
performance, especially in terms of run-time, while SPAligner lagged behind, particularly
in larger datasets.

In terms of accuracy, GraphAligner outperformed SPAligner in two of the datasets,
although it required additional coding effort to extract the output sequences. On the other
hand, SPAligner automatically constructs sequences but missed some AMR gene queries,
reducing its overall reliability for accurate sequence alignment.

For future research, exploring newer tools that are emerging in the field of sequence
alignment may provide valuable alternatives to Bandage, potentially offering more compa-
rable results than those of GraphAligner and SPAligner. These tools could further enhance
the detection of AMR genes in complex assembly graphs, contributing to more effective
genomic analysis in combating antimicrobial resistance.

Furthermore, as sequencing technologies evolve, particularly with the rise of long-read
sequencing platforms, future work could focus on optimizing existing alignment tools
or developing new ones that can efficiently handle these longer reads within assembly
graphs. The ability to accurately align and analyze longer reads may lead to more detailed
reconstructions of microbial genomes and better tracking of AMR gene dissemination.
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Lastly, expanding the datasets used for benchmarking tools to include more diverse
and complex real-world samples could provide more comprehensive insights into the
tools’ robustness. These future experiments could focus on a wider range of metagenomic
environments, including those with higher variability in microbial content, to better reflect
the challenges encountered in real-world AMR monitoring and research.
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