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Abstract

We use some ‘natural’ language operations, such as shuffle (scattered insertion) and scattered deletion to model9
noisy channels, that is, nondeterministic processes transforming words to words. In this spirit, we also introduce
the operation of scattered substitution and derive the closure properties of the language families in the Chomsky11
hierarchy under this operation. Moreover, we consider a certain type of language inequations involving language
operations and observe that, by varying the parameters of such an inequation, we can define families of codes such13
as prefix and infix, as well as families of error-detecting languages. Our results on this type of inequations include
a characterization of the maximal solutions, which provides a uniform method for deciding whether a given regular15
code of the type defined by the inequation is maximal.
© 2004 Published by Elsevier Inc.17
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1. Introduction19

Language operations, such as catenation, shuffle (scattered insertion) and scattered deletion, have been a
classical topic of study in formal language theory. In particular, the closure properties of language families21
in the Chomsky hierarchy under such operations are one of the central themes in this theory [14,7]. More
recently, also the topic of language equations involving language operations other than catenation has23
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been of interest [8,10] (see [2] for language equations involving the catenation operation). In this work,1
we observe that certain language operations—in particular shuffle and scattered deletion—can be used to
model noisy channels (in the sense of [12]). In this spirit we introduce another ‘natural’language operation,3
the operation of scattered substitution, and derive the closure properties of the language families in the
Chomsky hierarchy under this operation. We also observe that a certain type of language inequations can5
be used to define code-related properties of languages. More specifically, consider the inequation

X♦L ⊆ Xc with X ⊆ M, (*)7

where X is the unknown language, Xc is the complement of X, L and M are fixed languages, and ♦ is a
binary language operation. Depending on the choice of♦, L, and M, the solution set of such an inequation9
could be the family of all prefix codes, hypercodes, infix codes, etc. (see [5] for such families of codes).
Moreover, the pair (♦, L) can be used to define a noisy channel, which we denote by [♦L�]. With this11
interpretation, the solution set of the inequation is the set of all languages that are error-detecting for the
channel [♦L�]. Following certain ideas in [8,10] about language equations, we obtain a characterization13
of the maximal solutions of the inequation (∗), when (∗) is of type (c)—see Section 6. This yields a
method for deciding whether a given regular code of the type defined by the inequation is maximal. We15
note that uniform methods for deciding code-related properties of regular languages have been considered
in [6,4]. However, to our knowledge, there is no analogous uniform method for deciding the maximality17
property.

The paper is structured as follows. In the next section we provide the basic notation and background19
about formal languages, binary relations, word operations, language equations and error-detection. In
Section 3 we give examples to demonstrate that certain code-related properties are definable via language21
inequations of type (∗). For the case of error-detection properties we need the concept of noisy channel.
We show how to model certain channels using language operations in Section 4. In Section 5, we study23
the closure properties of language families in the Chomsky hierarchy under the operations involved
in modelling channels with substitution errors. In Section 6 we point out the connection between error-25
detecting languages and the solutions of the above inequation and establish basic results about the maximal
solutions of this inequation. When the inequation is of type (c) we obtain a necessary and sufficient27
condition for whether a given solution is maximal—see Corollary 6.7. In the last section we discuss
some special cases and applications of our results. In particular, we show that (i) for certain inequations29
with finitely many maximal solutions there is a method for obtaining those solutions; (ii) the problem of
whether the inequation has a solution of at least k elements, for some given k, is NP-complete; (iii) there31
are simple and efficient algorithms for deciding whether a given regular prefix code, or finite bifix code,
or finite infix code, or fixed-length 1-error-detecting code is maximal.33

2. Definitions, notations and background

2.1. Alphabet, word, language, automaton, binary relation35

An alphabet is a finite and nonempty set of symbols. In the sequel we shall use a fixed alphabet �. The
set of all words (over �) is denoted by �∗. This set includes the empty word �. The length of a word w is37
denoted by |w|. For a nonnegative integer n and a word w, we use wn to denote the word that consists of n
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concatenated copies of w. The Hamming distance H(u, v) between two words u and v of the same length1
is the number of corresponding positions in which u and v differ. For example, H(abba, aaaa) = 2.

A language L is a set of words, or equivalently a subset of �∗. A language is said to be �-free if it3
does not contain the empty word. For a language L, we write L� to denote L ∪ {�}. If n is a nonnegative
integer, we write Ln for the language consisting of all words of the form w1 · · ·wn such that each wi5
is in L. We also write L∗ for the language L0 ∪ L1 ∪ L2 ∪ · · · and L+ for the language L∗ − {�}. The
notation Lc represents the complement of the language L; that is, Lc = �∗−L. For the classes of regular,7
context-free, and context sensitive languages, we use the notations REG, CF and CS, respectively.

A nondeterministic finite automaton with � productions (or transitions), a �-NFA for short, is a quintuple9
A = (S, �, s0, F, P ) such that S is the finite and nonempty set of states, s0 is the start state, F is the set of
final states, and P is the set of productions of the form sx → t , where s and t are states in S, and x is either11
a symbol in � or the empty word. If there is no production with x = �, the automaton is called an NFA.
If for every two productions of the form sx1 → t1 and sx2 → t2 of an NFA we have that x1 �= x2 then13
the automaton is called a DFA (deterministic finite automaton). The language accepted by the automaton
A is denoted by L(A). The automaton is called trim if every state is reachable from the start state and can15
reach a final state in F (when F �= ∅). The size |A| of the automaton A is the number |S| + |P |. Note that
the number |S| of states of a trim automaton is at most 1+ |P |; therefore, the size of such an automaton17
is |A| = �(|P |).

A finite transducer (in standard form) is a sextuple T = (S, �, �′, s0, F, P ) such that �′ is the output19
alphabet, the components S, s0, F are as in the case of �-NFAs, and the set P consists of productions of
the form sx → yt where s and t are states in S, x ∈ � ∪ {�} and y ∈ �′ ∪ {�}. If x is nonempty for21
every production then the transducer is called a gsm (generalized sequential machine). If, in addition,
y is nonempty for every production then the transducer is called a �-free gsm. The relation realized by23
the transducer T is denoted by R(T ). The concept of a trim transducer is the same as that in the case of
automata. The size |T | of the transducer T (in standard form) is |S| + |P |. Again, when the transducer is25
trim its size is |T | = �(|P |).

A binary relation �, say, over � is a subset of �∗×�∗. The domain of �, denoted dom (�), is the set of all27
words u such that (u, v) is in � for some word v. We shall use the notation �(u) for the set {v | (u, v) ∈ �}.
This notation is extended to languages L as follows: �(L) = ∪u∈L�(u). The symbol �−1 represents the29
inverse of the relation �, which is equal to {(v, u) | (u, v) ∈ �}. The composition �1 ◦ �2 of two binary
relations �1 and �2 is the binary relation {(u, v) | (u, z) ∈ �2 and (z, v) ∈ �1, for some word z}. A relation31
is called rational if it can be realized by a finite transducer.

We refer the reader to [15] or [17] for details on automata and formal languages.33

2.2. Binary word operations

A binary word operation is a mapping♦ : �∗×�∗ → 2�∗ , where 2�∗ is the set of all subsets of �∗. The35
domain of ♦, denoted dom (♦), is the set of all pairs (u, v) of words such that the set u♦v is not empty.
The left domain of♦ is dom 1(♦) = {u : (u, v) ∈ dom (♦) for some word v}. Similarly, the right domain37
of♦ is dom 2(♦) = {v : (u, v) ∈ dom (♦) for some word u}. The image of♦ is im (♦) =⋃

u,v∈�∗ u♦v.
The characteristic relation of ♦ is39

C♦ = {(w, u, v) : w ∈ u♦v}.
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For any languages X andY, X♦Y =⋃
u∈X,v∈Y u♦v. It should be noted that every subset B of �∗×�∗×�∗1

defines a unique binary word operation whose characteristic relation is exactly B.

Definition 2.1 (Kari [8]). Let ♦ be a operation. The left inverse ♦l of ♦ is defined as3

w ∈ (x♦v) iff x ∈ (w♦lv), for all v, x, w ∈ �∗,

and the right inverse ♦r of ♦ is defined as5

w ∈ (u♦y) iff y ∈ (u♦rw), for all u, y, w ∈ �∗.

Definition 2.2. Let ♦ be a binary word operation. The word operation ♦′ defined by u♦′v = v♦u is7
called reversed ♦.

It should be clear that, for every binary operation♦, the triple (w, u, v) is in C♦ if and only if (u, w, v)9
is in C♦l if and only if (v, u, w) is in C♦r if and only if (w, v, u) is in C♦′ . If x and y are symbols in
{l, r,′ }, the notation♦xy represents the operation (♦x)y . Using the above observations, one can establish11
identities between operations of the form♦xy . For example,♦ll = ♦rr = ♦′′ = ♦ and♦′l = ♦r ′ = ♦lr .

Next we list a few binary word operations together with their left and right inverses [7,8].13
Catenation: 1 u · v = {uv}, with ·l = −→rq and ·r = −→lq .
Left quotient: u −→lq v = {w} if u = vw, with −→l

lq = ·′ and −→r
lq = −→rq .15

Right quotient: u −→rq v = {w} if u = wv, with −→l
rq = · and −→r

rq = −→lq .
Insertion: u←− v = {u1vu2 | u = u1u2}, with←−l = −→ and←−r =⇀↽′.17
Deletion: u −→ v = {u1u2 | u = u1vu2}, with −→l =←− and −→r =⇀↽.
Dipolar deletion: u ⇀↽ v = {w | u = v1wv2, v = v1v2}, with ⇀↽l =←−′ and ⇀↽r = −→.19
Shuffle (or scattered insertion): u�v = {u1v1 · · · ukvkuk+1 | k�1, u = u1 · · · ukuk+1, v = v1 · · · vk},

with �l = � and �r = �′.21
Scattered deletion: u�v = {u1 · · · ukuk+1 | k�1, u = u1v1 · · · ukvkuk+1, v = v1 · · · vk}, with�l =
� and�r = �.23

2.3. Language equations

The process of solving language equations has much in common with the process of solving algebraic25
equations. For example the equation X♦L = R is similar to the equation x + a = b, where a, b are
constants. In both cases, the unknown left operand can be obtained from the result of the operation and the27
known operand by using an “inverse” operation. In the case of addition, this role is played by subtraction.
In the case of a binary word operation, which usually is not commutative, the notion of left inverse has29
to be utilized. Similarly, the notion of right-inverse will aid in solving equations of the type L♦Y = R,
where the unknown is the right-operand. We recall now a result from [8] that uses the left and right inverse31
operations to solve language equations.

1 We shall also write uv for u · v.



UNCORRECTED P
ROOF

YJCSS2023

ARTICLE IN PRESS
L. Kari, S. Konstantinidis / Journal of Computer and System Sciences ( ) – 5

Theorem 2.3. Let L, R ⊆ �∗ be two languages and let ♦ be a binary word operation. If the equation1
X♦L = R (respectively, L♦Y = R) has a solution then the language Xmax = (Rc♦lL)c (respectively,
Ymax = (L♦rRc)c) is also a solution, namely one that includes all the other solutions to the equation.3

For example consider the case of scattered deletion and shuffle. The fact that the left inverse of scattered
deletion is shuffle and viceversa helps us solve equations of the type5

X�L = R, X � L = R.

By Theorem 2.3, the maximal solutions to these equations, if they exist, are Xmax = (Rc � L)c, respec-7
tively, Xmax = (Rc�L)c. As REG is closed under scattered deletion [7] and shuffle [14], these maximal
solutions are regular and can be effectively constructed in case R is regular. Note that the same languages9
are also solutions to the inequations X�L ⊆ R and X � L ⊆ R, respectively, as a consequence of the
following lemma, which can be shown using the same arguments as in the proof of Theorem 2.3.11

Lemma 2.4. If S is a solution to X♦L ⊆ R (respectively, L♦Y ⊆ R) then also (Rc♦lL)c (respectively,
(L♦rRc)c) is a solution, which includes S.13

2.4. Channels and error-detection

We recall the concepts of channel and error-detection from [12]. A channel is a binary relation � that15
is domain preserving, that is, � ⊆ �∗ × �∗ and (u, u) is in � for all u ∈ dom (�). The fact that (u, v) is in
� means that the word v can be received when u is transmitted via the channel �. If, moreover, u �= v we17
say that v can be received from u with errors. The requirement that � is domain preserving ensures that
error-free communication via � is possible. A channel � is called rational if the relation � is rational.19

A language L is error-detecting for � if no word in L� can be received from a different word in L� via �.
More formally, a language L is error-detecting for a channel � iff for all words u and v in L�, if (u, v) ∈ �21
then u = v.

Remark 2.5. A language is error-detecting for � if and only if it is error-detecting for �−1.23

Next we list a few channels involving substitution, insertion, and deletion (SID) errors—see [13] for
additional channels of this kind. We note that the subscript ‘s’ indicates scattered errors as opposed to25
burst errors [13].

�s(m,∞): consists of all pairs (u, v) such that v is obtained by deleting up to m symbols from u.27
�s(m,∞): consists of all pairs (u, v) such that v is obtained by inserting up to m symbols in u.
�s(m,∞): consists of all pairs (u, v) such that v is obtained by substituting up to m symbols of u with29

different alphabet symbols. Equivalently, this channel consists of all pairs (u, v) such that |u| = |v| and
the Hamming distance H(u, v) is at most m.31

(� � �)s(m,∞): consists of all pairs (u, v) such that v is obtained by performing a total of up to m
substitutions and deletions in u.33

(� � �)s(m,∞): consists of all pairs (u, v) such that v is obtained by performing a total of up to m
substitutions and insertions in u.35
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3. Code-related properties as solutions to language inequations1

A language K is said to be a (uniquely decodable) code, if every word w in K∗ has a unique factorization
over K, that is, there is only one sequence of words w1, . . . , wn in K, for some n�0, such that w =3
w1 · · ·wn. A language property, say P , can be viewed as the set of all languages having that property.
Using this interpretation, many natural code-related properties can be viewed as solution sets to language5
inequations involving binary word operations. We provide in the following several examples. The reader
is referred to [16] or [5], for instance, for details on codes.7

Example 3.1. A language K is a prefix (respectively, suffix) code if ux ∈ K (respectively, xu ∈ K)
implies x = �, for all words u ∈ K and x ∈ �∗. Let P be the “prefix-code” property. Then P is the9
solution set of (X −→rq �+) ⊆ Xc with the constraint X ⊆ �+. Similarly the “suffix-code” property is
the solution set of (X −→lq �+) ⊆ Xc with X ⊆ �+.11

Example 3.2. A language K is an infix code if xuy ∈ K implies x = y = �, for all words u ∈ K and
x, y ∈ �∗. It is an outfix code if u1u2 ∈ K and u1xu2 ∈ K implies x = �, for all words u1, u2, x ∈ �∗.13
Let P be the “infix-code” property. Then P is the solution set of (X ⇀↽ �+) ⊆ Xc with X ⊆ �+.
Similarly, the “outfix-code” property is the solution set of (X −→ �+) ⊆ Xc with X ⊆ �+.15

Example 3.3. A language K is a hypercode if u ∈ v � �∗ implies u = v, for all words u, v ∈ K . The
“hypercode” property is exactly the solution set of (X � �+) ⊆ Xc with X ⊆ �+.17

The next examples show how certain “error-detection” properties can also be modelled in terms of
solution sets to language equations. Let � be a channel. We write P� for the “�-error-detecting language”19
property, that is P� is the class of all languages that are error-detecting for �.

Example 3.4. Let � be the channel �s(m,∞), i.e., (u, v) ∈ � iff v is obtained from u by at most m21
deletions. Then P�, the set of all languages which are error-detecting for �, is exactly the set of solutions
of X��(�

⋃
. . .

⋃
�m) ⊆ Xc

�. Indeed, let X ∈ P�. Consider z ∈ x�y with x ∈ X� and y ∈ �+ with23
|y|�m. We want to show z �∈ X�. As z is obtained from x using at least 1 and at most m scattered
deletions, it follows that (x, z) is in � and x �= z. Hence z �∈ X�. Conversely, suppose X satisfies the25
inequation but X �∈ P�. Then there are two different words x and z in X� such that (x, z) ∈ �. This implies
z ∈ X��(�

⋃
. . .

⋃
�m) and, therefore, z ∈ Xc

�—a contradiction. Hence, X ∈ P�.27

Example 3.5. Let � be an insertion channel � = �s(m,∞), i.e., (u, v) ∈ � iff v is obtained from u by at most
m insertions. We have that P�, the set of all languages which are error-detecting for �, is exactly the set of29
solutions of X�(�

⋃
. . .

⋃
�m) ⊆ Xc, or equivalently, the set of solutions of X��(�

⋃
. . .

⋃
�m) ⊆ Xc

�.

4. Using word operations to model channels31

Let ♦ be a binary word operation and L be a language. The pair (♦, L) plays an important role in the
sequel.33
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Definition 4.1. Let L be a language and let ♦ be a binary word operation.1
(i) The binary relation [♦L] consists of all pairs (u, v) of words such that v ∈ u♦L.

(ii) The operation ♦ is called L-rational if [♦L] is a rational relation.3

Recall that, for a binary operation � ⊆ �∗ ×�∗ and a word u ∈ �∗, we defined �(u) = {v | (u, v) ∈ �}.

Lemma 4.2. (i) For every binary operation ♦ and languages K and L, one has that [♦L](K) = K♦L.5
(ii) For every binary operation ♦ and language L, [♦lL] = [♦L]−1.

(iii) For every binary relation �, there is a binary operation ♦ and a language L such that � = [♦L].7

Proof. (i) Follows easily from the above definition.
(ii) We have (u, v) ∈ [♦lL] iff v ∈ u♦lL iff u ∈ v♦L iff (v, u) ∈ [♦L] iff (u, v) ∈ [♦L]−1.9
(iii) There are many ways to define♦ and L from �. For example, consider the relation B = {(v, u, z) :

z ∈ �∗ and (u, v) ∈ �}. Then � = [♦�∗], where ♦ is the binary operation whose characteristic relation11
is B. �

From the examples in Section 3 we understand that there is a close connection between channels and13
pairs of the form (♦, L). For example, the channel �s(m,∞) is equal to [�(�0 ∪ · · · ∪ �m)] and the
channel �s(m,∞) is equal to [�(�0 ∪ · · · ∪�m)]. As� is the left inverse of�, the above lemma implies15
that the channel �s(m,∞) is the inverse of the channel �s(m,∞). By Remark 2.5, this in turn implies that
a language is error-detecting for �s(m,∞) if and only if it is error-detecting for �s(m,∞).17

Next we consider two natural binary word operations related to channels with substitution errors.

Definition 4.3. If u, v ∈ �∗ then we define the substitution in u by v as u��v = {u1v1u2v2 . . . ukvkuk+1 |19
k�0, u = u1a1u2a2 . . . ukakuk+1, v = v1v2 . . . vk, ai, vi ∈ �, 1�i�k, ai �= vi,∀i, 1�i�k}.

The case k = 0 corresponds to v = � when no substitution is performed.21

Example 4.4. Let � = �s(m,∞). Then P� is the solution set of the inequation X��(� ⋃
. . .

⋃
�m) ⊆ Xc.

Moreover, the channel �s(m,∞) is equal to [��(�0 ∪ · · · ∪ �m)].23

Definition 4.5. If u, v ∈ �∗ then we define the substitution in u of v as u�v = {u1a1u2a2 . . . ukakuk+1 |
k�0, u = u1v1u2v2 . . . ukvkuk+1, v = v1v2 . . . vk, ai, vi ∈ �, 1�i�k, ai �= vi,∀i, 1�i�k}.25

Lemma 4.6. The operation �� is the left-inverse of �.

Proof. Let w ∈ u��v. Then u = u1a1u2a2 . . . ukakuk+1, v = v1v2 . . . vk and w = u1v1u2v2 . . . ukvkuk+127
for some ui ∈ �∗, ai, vi ∈ �, ai �= vi , 1�i�k. This means u ∈ w�v.

Conversely, let u ∈ (w�v). Then w = w1v1w2v2 · · ·wkvkwk+1, v = v1v2 . . . vk and u is equal to29
w1a1w2a2 · · ·wkakwk+1 for some wi ∈ �∗, ai, vi ∈ �, ai �= vi , 1�i�k. This means w ∈ (u��v). �

By Theorem 2.3 the equations X��L = R, X�L = R have as maximal solutions (if any) Xmax =31
(Rc�L)c, respectively, Ymax = (Rc��L)c.
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The operations � and �� have a closer relation when the right operand is a length-closed language. A1
language L is length-closed if, for every n�0, when a word of length n is in L then all words of length n
are in L. An example of such a language is �0 ∪ · · · ∪ �m.3

Remark 4.7. For every length-closed language L, [�L] = [��L]. Therefore, �s(m,∞) = [�(�0 ∪ · · · ∪
�m)].5

Next we define the right inverses of �� and �.

Definition 4.8. For any words u, v ∈ �∗ of the same length and with Hamming distance H(u, v) = k,7
for some nonnegative integer k, u�v is the set of words

b1b2 . . . bk, bi ∈ �, 1�i�k,9

such that u = u1a1 · · · ukakuk+1, v = u1b1 · · · ukbkuk+1 and, for all i, 1�i�k, ai �= bi .

In other words, u�v consists of the word b1b2 · · · bk where b1, b2, . . . , bk are the symbols of v that are11
different from the corresponding symbols of u. It should be clear that the set u�v is empty when u and v
have different lengths.13

Example 4.9. If L1 = {anbn|n�1} and L2 = {bm|m�1}, then L1�L2 = b∗. (We can only perform
anbn�b2n which gives bn.) On the other hand, L2�L1 = a∗. Hence, the operation� is not commutative.15

Example 4.10. In general, if L ⊆ �∗ and a ∈ � then L�a∗ ⊆ a∗, L�a∗ = {a|w|−|w|a | w ∈ L}, where
|w|a is the number of a’s occurring in the word w.17

Note that � is the right inverse of ��, and the reversed � is the right inverse of �. Consequently, by
Theorem 2.3, the solutions to the equations L��Y = R and L�Y = R (if any) are Ymax = (L�Rc)c,19
respectively, Ymax = (Rc�L)c.

To model more complex channels we need the concept of composition of two word operations. We21
shall assume that the symbol ‘;’ is not in the alphabet �.

Definition 4.11. Given two binary operations ♦1 and ♦2, define the binary operations (♦1♦2) and23
(♦1;♦2) as follows:

For all words u, w, v ∈ �∗ w ∈ u(♦1♦2)v if and only if w ∈ (u♦1v1)♦2v2 for some words v1 and v225
with v = v1v2. For all words u, w ∈ �∗ and v ∈ �∗;�∗, w ∈ u(♦1;♦2)v if and only if w ∈ (u♦1v1)♦2v2
for some words v1 and v2 with v = v1; v2.27

Next we provide some observations concerning the two composition operations.
A language L is commutative, if xy ∈ L⇔ yx ∈ L for all words x and y.29

Proposition 4.12. Let L, L1, L2 be languages over �. The following statements hold true.
(i) (L♦1L1)♦2L2 = L(♦1;♦2)L1;L2.31
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(ii) [(♦1;♦2)L1;L2] = [♦2L2] ◦ [♦1L1].1
(iii) [(♦1;♦2)

lL1;L2] = [(♦l
2;♦l

1)L2;L1].
(iv) If L is commutative then [(♦1♦2)

lL] = [(♦l
2♦l

1)L].3

Proof. (i) Follows easily from the definition of composition.
(ii) We have that (u, v) ∈ [(♦1;♦2)L1;L2] iff v ∈ (u♦1L1)♦2L2 iff there is a word z such that5

z ∈ u♦1L1 and v ∈ z♦2L2 iff there is a word z such that (u, z) ∈ [♦1L1] and (z, v) ∈ [♦2L2] iff
(u, v) ∈ [♦2L2] ◦ [♦1L1].7

(iii) We use part (i) and Lemma 4.2: [(♦1;♦2)
lL1;L2] = [(♦1;♦2)L1;L2]−1 = [♦1L1]−1 ◦

[♦2L2]−1 = [♦l
1L1] ◦ [♦l

2L2] = [(♦l
2;♦l

1)L2;L1]9
(iv) Similar to the above. �

One can verify that the channel (�� �)s(m,∞) is equal to [(���)(�0 ∪ · · · ∪ �m)], and the channel11
(�� �)s(m,∞) is equal to [(��)(�0 ∪ · · · ∪ �m)]. Hence, the following result holds.

Corollary 4.13. The inverse of the channel (�� �)s(m,∞) is (�� �)s(m,∞); therefore, a language is13
error-detecting for (�� �)s(m,∞) if and only if it is error-detecting for (�� �)s(m,∞).

We note that analogous results for the property of error-correction have been obtained in [11] using15
different tools. Now let �1 = �s(m1,∞) ⊕ �s(m2,∞) be the channel consisting of all pairs (u, v)

such that v is obtained from u using at most m2 deletions and at most m1 substitutions. Let �2 =17
�s(m1,∞)⊕ �s(m2,∞) be the channel consisting of all pairs (u, v) such that v is obtained from u using
at most m2 insertions and at most m1 substitutions. Then, it follows that19

�1 = [(�; ��)(�0 ∪ · · · ∪ �m2); (�0 ∪ · · · ∪ �m1)],

�2 = [(�;�)(�0 ∪ · · · ∪ �m1); (�0 ∪ · · · ∪ �m2)].21

Corollary 4.14. The inverse of the channel �s(m1,∞) ⊕ �s(m2,∞) is the channel �s(m1,∞) ⊕ �s
(m2,∞); therefore, a language is error-detecting for the channel �s(m1,∞) ⊕�s(m2,∞) if and only if23
it is error-detecting for �s(m1,∞)⊕ �s(m2,∞).

5. Closure properties of substitution operations25

The closure properties of language families in the Chomsky hierarchy under the operations of scattered
insertion and deletion were first studied in [7]. In this section we investigate such closure properties for27
the scattered substitution operations, namely ��,�,�.

Proposition 5.1. If L and R are languages over the alphabet �, R a regular one, L�R is the image of L29
through a �-free gsm. Moreover, the gsm realizes the relation [�R].
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Proof. Let A = (S, �, s0, F, P ) be an NFA that recognizes a language R over �. Construct the following1
gsm g = (�, �, S, s0, F, P ′) where

P ′ = {sa→ as|s ∈ S, a ∈ �} ∪ {sa→ bs′|sa→ s′ ∈ P, a �= b}.3

It is clear that g(u1v1 · · · ukvkuk+1) = {u1a1 · · · ukakuk+1 | v = v1 · · · vk ∈ R and ai �= vi} and
therefore g(L) = L�R for any language L ⊆ �+. Moreover, it follows that (u, u′) is in [�R] if and only5
if u′ ∈ g(u), for all words u and u′. �

Corollary 5.2. REG and CF are closed under � with regular languages.7

Proposition 5.3. There exist two linear languages L1, L2 such that L1�L2 is not context-free.

Proof. Let � = {a, b, c, d, f, $} and consider the two context-free languages over �9

L1 = {an(bc)n$(df )m|n, m�1},
L2 = {cndn|n�1}.11

Then

(L1�L2) ∩ a∗b∗$f ∗ = {anb2n$f 2n|n�1}13

As CF is closed under intersection with regular languages it follows that L1�L2 is not a context-free
language. �

15

Corollary 5.4. CF is not closed under �.

Proposition 5.5. CS is closed under �.17

Proof. Let L1, L2 be two context-sensitive languages over � and let �′ = {a′| a ∈ �}, �′′ = {a′′| a ∈ �}.
Consider the gsm g = (S, �, �∪�′, s0, F, P ), with S = {s0} = F , P = {s0a→ as0, s0a→ a′s0|a ∈ �},19
that transforms some letters in their primed versions. Consider now the morphisms h : �→ �′′, h(a) =
a′′, a ∈ �, and h′ : � ∪ �′ ∪ �′′, h′(a) = a, h′(a′) = a′, h′(a′′) = �.21

We claim that L1�L2 = g′{h′[[g(L1) � h(L2)] ∩ [⋃a∈� �∗a′a′′�∗]∗]} where g′ is the gsm g′ =
(S′, �∪�′, �, s′, F ′, P ′) and S′ = {s′} = F ′, P ′ = {s′a→ as′|a ∈ �} ∪ {s′a′ → bs′|a �= b, a, b ∈ �}.23

Indeed, given a word u = u1v1u2v2 . . . ukvkuk+1 ∈ L1 and v = v1v2 . . . vk ∈ L2, vi ∈ �, ui ∈
�∗, 1�i�k,25

[g(u)� h(v)] ∩ [
⋃

a∈�
�∗a′a′′�∗]∗

produces u1v
′
1v
′′
1u2v

′
2v
′′
2 . . . ukv

′
kv
′′
k uk+1.27

The intersection with (
⋃

a∈� �∗a′a′′�∗)∗ ensures that only words g(u) and h(v), where v is a sub-
word of u, are shuffled, and only words where a primed letter is followed by an identical double29
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primed letter are kept. Applying h′ to u1v
′
1v
′′
1u2v

′
2v
′′
2 . . . ukv

′
kv
′′
k uk+1 erases the double primed letters1

producing u1v
′
1u2v

′
2 . . . ukv

′
kuk+1, while g′ replaces every primed letter with a different one, resulting in

u1a1u2a2 . . . ukakuk+1 ∈ u�v, as ai �= vi, 1�i�k.3
A morphism h is termed a k-linear erasing with respect to L iff, for each w ∈ L, |w|�k|h(w)|. Note

that h′ is a 2-linear erasing with respect to the language it is applied to, as it erases at most half of each5
word. The proposition now follows as CS is closed under k-linear erasing as well as all the other operators
involved. �7

Proposition 5.6. If L1, L2 ⊆ �∗, L2 regular, then L1��L2 is the image of L1 through a �-free gsm.
Moreover, the gsm realizes the relation [��L2].9

Proof. We have that L1��L2 = [��L2](L1) = [�lL2](L1) = [�L2]−1(L1) = g−1(L1), where g is the
gsm realizing [�L2]—see Proposition 5.1. The claim follows when we recall that g−1 is obtained from11
g by simply replacing every production sa→ bt of g with the production sb→ at [17]. �

Corollary 5.7. REG, CF and CS are closed under �� with regular languages.13

Proposition 5.8. CF is not closed under ��.

Proof. Use exactly the same languages L1 and L2 as in Proposition 5.3 for the operation � and the15
language

(L1��L2) ∩ a∗c∗$d∗ = {anc2n$d2n | n ≥ 1}. �17

Proposition 5.9. CS is closed under ��.

Proof. Let L1, L2 be two context-sensitive languages over � and let �′ = {a′|a ∈ �}, �′′ = {a′′|a ∈ �}.19
Construct the gsm g = (S, �, � ∪ �′, s0, F, P ) where S = {s0}, F = {s0}, P = {sa → as|a ∈

�} ∪ {sa → a′s|a ∈ �}. The nonerasing gsm g nondeterministically changes some letters into their21
primed versions.

Consider now the morphism h : �→ �′′, h(a) = a′′, a ∈ �, and the morphism h′ : � ∪ �′ ∪ �′′ → �23
defined as h′(a) = a, h′(a′) = �, h′(a′′) = a, a ∈ �.

We claim that L1��L2 = h′[[g(L1)� h(L2)] ∩ [⋃a,b∈�,a �=b(�
∗a′b′′�∗)]∗].25

Indeed, let us consider a word u = u1a1u2a2 . . . ukakuk+1 ∈ L1 and v = v1v2 . . . vk ∈ L2, ai �=
vi, 1�i�k.27

We have that

(g(u)� h(v)) ∩ [
⋃

a,b∈�,a �=b

�∗a′b′′�]∗
29

produces words of the form u1a
′
1v
′′
1u2a

′
2v
′′
2 . . . uka

′
kv
′′
k uk+1.
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The intersection with [⋃a,b∈�,a �=b �∗a′b′′�∗]∗ ensures that only those words g(u) and h(v) are shuffled1
where each letter of v is different from a letter in u, and only those words are kept from the shuffle in
which the letters in h(u) and their “different” counterparts are adjacent. The morphism h′ afterwards3
erases all the primed letters and transforms the double primed letters into ordinary ones, resulting in
u1v1u2v2 . . . ukvkuk+1 ∈ u��v.5

Note that h′ is a 2-linear erasing with respect to the language it is applied to, as it erases at most half
of each word.7

As CS is closed under linear erasing homomorphisms, intersection with regular languages, shuffle, it
follows it is closed also under ��. �9

Proposition 5.10. If L1, L2 ⊆ �∗, L2 regular, then there exists a gsm g with erasing such that g(L1) =
L1�L2. Moreover, the gsm realizes the relation [�L2].11

Proof. Let L2 be a regular language, A = (S, �, s0, F, P ) be a finite automaton, L(A) = L2. Construct
the gsm g = (S, �, �, s0, F, P ) where P ′ = {sa→ s′|sa→ s′ ∈ P }∪{sa→ bs′|sb→ s′ ∈ P, b �= a}.13

Then g(L1) = L1�L2. Indeed, consider u = u1a1 . . . ukakuk+1 ∈ L1, v = u1b1u2b2 . . . ukbkuk+1,

ai �= bi, 1�i�k.15
The gsm g applied to u works as follows. Rules of the type sa → s′ ∈ P erase subwords ui that are

common between u and v. Rules sa → bs′ where sb→ s′ ∈ P, b �= a read the letters a where words u17
and v differ and replace them with the corresponding letters in v.

The fact that the set of final states is F, the set of final states of A, ensures that only words w ∈ u�v, v ∈19
L2 reach a final state. Moreover, it is evident that g realizes the relation [�L2]. �

Corollary 5.11. CF, REG are closed under � with regular languages.21

Proof. It follows as REG, CF are closed under gsm mappings. �

Proposition 5.12. CS is not closed under � with regular languages.23

Proof. Let L be a recursively enumerable language over � and let a, b be different symbols not in �. Then,
[15, p. 89] there exists a CS language L1 such that (i) L1 consists of words of the form aibw, i�0, w ∈ L,25
and (ii) for every w ∈ L, there is an i�0 such that aibw ∈ L1.

Let �′ = {c′| c ∈ �} and �′′ = {c′′| c ∈ �}. Consider now the morphism h on � ∪ {a, b} defined by27
h(a) = a, h(b) = b, h(c) = cc′ for all c ∈ �.

We claim that h1(L) = K , where29

K = [h(L1)�a∗b(
⋃

c∈�
cc′′)∗] ∩ (�′′)∗

and h1 : � −→ �′′ is the morphism defined as h1(c) = c′′ for all c ∈ �. We leave it to the reader to verify31
that every word in h1(L) also belongs to K. Now take a word w ∈ K . Then there exist words u ∈ h(L1),
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v ∈ a∗b(
⋃

c∈� cc′′)∗ such that w ∈ u�v. The words u, v are of the form u = aiba1a
′
1a2a

′
2 . . . aka

′
k1

respectively v = ajbb1b
′′
1b2b

′′
2 . . . bmb′′m for some i, j, m, k�0.

If i �= j then w would contain letters a or b which contradicts w ∈ (�′′)∗. Consequently, i = j . As |u|3
=|v|, it follows that m = k.

If there would exist 1� l�k with al �= bl then the word w would contain the letter bl ∈ � which5
contradicts w ∈ (�′′)∗. Consequently, for all 1� l�k, al = bl . We can easily see now that, following
these considerations, w = b′′1b′′2 . . . b′′k with b1b2 . . . bk ∈ L, and the claim follows.7

It follows then that the class CS is not closed under�with regular languages, as this class is closed under
nonerasing morphisms, intersection with regular languages and, if L is a noncontext-sensitive language9
h1(L) will have the same property. (If h1(L) were context-sensitive then L, which equals the image of
h1(L) through a nonerasing morphism that transforms all double primed letters into normal ones, would11
also be context-sensitive.) �

Proposition 5.13. The family CF is not closed under �.13

Proof. Let � = {a, b, c, e, f, g, x, y, z} and consider the languages

L1 = {(ax)i(by)i(cz)k| i, k�0}, L2 = {(ex)l(fy)m(gz)m| l, m�0}.15

Then [(ax)i(by)i(cz)k�(ex)l(fy)m(gz)m] ∩ e∗f ∗g∗ = {eif igi |i�0} which is not context-free. �

6. Error-detection and the inequation X♦L ⊆ Xc with X ⊆ M17

The examples provided in Sections 3 and 4 reveal the following pattern: many natural code-related
properties can be reduced to the property of error-detection by varying the channel involved. At the same19
time, for many channels the property of error-detection can be studied via the inequation

X♦L ⊆ Xc with X ⊆ M (∗)21

by varying the operator♦ and the languages L and M. More specifically, consider the case where the pair
(♦, L) satisfies the condition23

For all u ∈ �∗, u �∈ u♦L and u ∈ u♦� C(♦, L).
When condition C(♦, L) is satisfied, the relation [♦L�] is a channel and it follows that a language is25

error-detecting for [♦L�] if and only if it is a solution of (∗) with M = �∗. With this interpretation of the
inequation (∗), we have that a language is a prefix code (respectively, suffix, infix, outfix, hypercode) if27
and only if it is error-detecting for the channel [−→rq �∗] (respectively,[−→′lq �∗], [⇀↽ �∗], [−→ �∗],
[��∗]).29

Definition 6.1. Inequation (∗) is of type (c), if condition C(♦, L) is satisfied.

In this section, we provide some observations and obtain general statements about the solutions of the31
inequation (∗) which are meaningful to error-detection, hence also to the code properties reducible to
the error-detection property. In particular, in Corollary 6.7 we obtain a characterization of the maximal33
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solutions of a type (c) inequation, which yields a method for deciding whether a given regular solution1
is maximal—see Proposition 6.14 and the discussion following that proposition. A consequence of this
result is that one can use the same method to decide whether a given regular prefix code, or suffix code,3
or infix code, or error-detecting language is maximal because each of these code properties is definable
via an inequation of type (c), as shown in Section 3.5

An important concept in our considerations is the residue of a solution.

Definition 6.2. Let S be a solution of (∗). The residue of S is the language M − (S ∪ S♦L ∪ S♦lL).7

Proposition 6.3. (i) If S is a solution of (∗) then every subset of S is also a solution of (∗).
(ii) Every solution of (∗) is included in a maximal solution of (∗).9
(iii) If the equation (∗) is of type (c) then {w} is a solution of (∗), for every word w in M.

Proof. (i) Let S1 be a subset of S and let w be a word in S1♦L. As S1♦L is a subset of S♦L, it follows11
that w ∈ Sc, hence also, w ∈ Sc

1.
(ii) Let P be the solution set of (∗) and let S = {Si : i ∈ I } be any totally ordered subset of P . We13

show that the upper bound
⋃

i∈I Si of S is a solution of (∗) as well; then the claim follows by Zorn’s
lemma. Let z ∈ s♦u for some s ∈ ⋃

Si and u ∈ L. Then s ∈ Sj , for some j ∈ I . If also z ∈ ⋃
Si then15

z ∈ Si for some i ∈ I . Let k = max{i, j}. Then z, x ∈ Sk and (Sk♦L)
⋂

Sk �= ∅, which contradicts the
fact that Sk is a solution of (∗).17

(iii) Obvious. �

The following is based on the proof of Theorem 2.3.19

Lemma 6.4. For any languages X, Y, Z and for any binary operator ♦,

X♦Y ⊆ Z ⇔ X ⊆ (Zc♦lY )c ⇔ Y ⊆ (X♦rZc)c.21

Proof. We consider only the first equivalence: “⇒” Let x ∈ X, but suppose x ∈ Zc♦lY ; then x ∈ t♦lY

for some t ∈ Zc, which implies t ∈ x♦Y and t ∈ X♦Y ⊆ Z; a contradiction.23
“⇐” Let z ∈ x♦Y , for some x ∈ X, but suppose z ∈ Zc. Then x ∈ z♦lY ⊆ Zc♦lY . As (Zc♦lY ) ⊆

Xc, x ∈ Xc; a contradiction. �
25

Corollary 6.5. (i) Eq. (∗) is equivalent to

X♦rX ⊆ Lc with X ⊆ M (∗∗)27

which in turn is equivalent to

X♦rX ⊆ dom 2(♦)− L with X ⊆ M.29

(ii) A language is a solution of (∗) if and only if it is a solution of X♦lL ⊆ Xc with X ⊆ M .
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Proof. X♦L ⊆ Xc is equivalent to L ⊆ (X♦rX)c which is equivalent to X♦rX ⊆ Lc. As im (♦r ) =1
dom 2(♦), X♦rX ⊆ dom 2(♦) and the claim follows. The second part can be shown analogously. �

Proposition 6.6. Let S be a solution of (∗).3
(i) If the residue of S is empty, then S is a maximal solution of (∗).

(ii) If (∗) is of type (c) and the solution S is maximal, then the residue of S is empty.5
(iii) If (∗) is of type (c), then S ∪ {w} is a solution of (∗) for every word w in the residue of S.

Proof. (i) Assume M ⊆ S ∪ S♦L ∪ S♦lL, but suppose there is w ∈ M − S such that T = S ∪ {w} is a7
solution of (∗). As w is not in S, at least one of the following holds.

(a) w is in S♦L. In this case, w ∈ z♦L for some z ∈ S, which implies z ∈ w♦lL ⇒ z ∈ T♦lL ⇒9
z ∈ T c ⇒ z �∈ S, a contradiction.

(b) w is in S♦lL. In this case, w ∈ z♦lL for some z ∈ S, which implies z ∈ T♦L⇒ z ∈ T c ⇒ z �∈ S,11
a contradiction.

Hence, S must be maximal.13
(ii) This is a consequence of (iii), which we prove next.
(iii) Assume (∗) is of type (c) and consider any word w ∈ M such that w is not in S ∪ S♦L ∪ S♦lL.15

Let T = S ∪ {w}. We show that T♦L ⊆ T c. Let z ∈ T♦L. We consider two cases.
(a) z ∈ S♦L. As S is a solution of (∗), z �∈ S. Also, if z = w then w ∈ S♦L, which contradicts our17

choice of w. Hence, z �∈ S ∪ {w}.
(b) z ∈ w♦L. Then w ∈ z♦lL. If z ∈ S then w ∈ S♦lL, which is impossible again. Hence, z �∈ S. If19

z = w then w ∈ w♦L, which contradicts condition (c). Hence, z �= w. It follows again that z �∈ T . �

Corollary 6.7. Let S be a solution to an inequation of type (c). Then S is maximal if and only if the residue21
of S is empty.

Corollary 6.8. If S is a solution of the equation X♦L = M −X, then S is a maximal solution of (∗).23

Proposition 6.9. If S is a solution of the inequation X♦X ⊆ R with X ⊆ M , then also each of the
languages25

M ∩ (Rc♦lS)c ∩ ((Rc♦lS)c♦rRc)c

and27

M ∩ (S♦rRc)c ∩ (Rc♦l(S♦rRc)c)c

is a solution, which includes S.29

Proof. Assume S is a solution of the given inequation and let P be the language (Rc♦lS)c. As S is a
solution of X♦S ⊆ R, one has that also P is a solution which includes S. Hence, P♦S ⊆ R. Now this31
implies that S is a solution of the inequation P♦Y ⊆ R; therefore, also the language (P♦rRc)c, call it
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Q, is a solution which includes S. Hence, P♦Q ⊆ R and, as (P ∩Q)♦(P ∩Q) is a subset of P♦Q,1
it follows that the language P ∩Q satisfies the inequation X♦X ⊆ R. As every subset of P ∩Q also
satisfies this inequation, we have that M ∩P ∩Q is a solution of X♦X ⊆ R with X ⊆ M . The statement3
about the second language can be shown analogously. �

Definition 6.10. Let L be a language. The set of left (respectively, right) quotients of L with respect to ♦5
is the set of languages of the form L♦lW (respectively, W♦rL), where W is a subset of �∗.

Using the fact that A∩Bc = A−B, for any languages A and B, Proposition 6.9 implies the following,7
where an expression of the form M − A− B is shorthand for (M − A)− B.

Corollary 6.11. If S is a solution of the inequation X♦X ⊆ R with X ⊆ M then there is a left quotient9
Pl and a right quotient Pr of Rc with respect to ♦ such that each of the languages M − Pl − (P c

l ♦rRc)

and M − Pr − (Rc♦lP c
r ) is also a solution which includes S.11

Using the above results and the fact that ♦rl = ♦l′ , for all binary operations ♦, also the following
holds true.13

Corollary 6.12. Every maximal solution of (∗) is of the form M − Pl − (P c
l ♦L) and of the form M −

Pr − (P c
r ♦lL), where Pl and Pr are left and right, respectively, quotients of L with respect to ♦r .15

We are interested in algorithms whose input involves equations of the form (∗). More specifically, we
shall assume that (∗) is such that ♦ is L-rational and M is regular. In this case, the equation is given17
effectively by a finite transducer realizing [♦L] and a finite automaton accepting M.

The following result provides a uniform polynomial time algorithm for deciding properties of regular19
languages that are definable via an equation of the form (∗). For the proof of this and other results
involving constructions and sizes of automata and transducers, we shall use the following notation—see21
also [17,12].

Notation: Let A and B be two trim �-NFAs and let T be a trim transducer (in standard form).23
• A ∩ B is a trim �-NFA of size O(|A||B|) accepting the language L(A) ∩ L(B).
• A ∪ B is a trim �-NFA of size O(|A| + |B|) accepting the language L(A) ∪ L(B).25
• If A and B are DFAs then A�B is a trim DFA of size O(|A||B|) accepting the language L(A)∪L(B).
• If A is a DFA then Ac is a trim DFA of size O(|A|) accepting the language L(A)c.27
• AT is a trim �-NFA accepting the language R(T )(L(A)) = {z ∈ �∗ | (w, z) ∈ R(T ), w ∈ L(A)}.
• T −1 is a trim transducer of size O(|T |) realizing the relation R(T )−1.29

Proposition 6.13. The following problem is decidable in time:

O(|A|2|T | + |A||B|).31

Input: A trim �-NFA A, a DFA B, and a trim transducer T (in standard form) realizing [♦K], for some
binary operation ♦ and language K.33
Output: Y/N depending on whether L(A) is a solution of X♦K ⊆ Xc with X ⊆ L(B).
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Proof. Testing whether L(A) ⊆ L(B) is equivalent to testing whether L(A)∩L(B)c = ∅. This is possible1
when we construct the automaton A ∩ Bc of size O(|A||B|), and test whether there is a path from the
start state to a final state, which takes time linear with respect to the graph of the automaton using depth3
first search, for instance.

Now consider the problem of deciding whether L(A)♦K is a subset of L(A)c. By Lemma 4.2, this5
is equivalent to testing whether [♦K](L(A)) ⊆ L(A)c. As the relation [♦K] is realized by T, one has
that [♦K](L(A)) = L(AT ). Hence, the problem is whether L(AT ) ∩ L(A) is empty. As before, one7
constructs the automaton AT ∩A of size O(|A|2|T |) and tests whether there is a path from the start state
to a final state. �9

The assumption that B is a DFA as opposed to a �-NFA is essential as, otherwise, computing the
complement of a �-NFA requires to convert it to a DFA, which in general would be of exponential size.11
In practice, however, the automaton B and possibly the transducer T are fixed and, therefore, not part of
the input. In such cases the algorithm would require time O(|A|2|T |), or simply O(|A|2) when T is fixed.13

Proposition 6.14. The following problem is computable:
Input: A �-NFA A, a �-NFA B, and a transducer T realizing [♦K], for some binary operation ♦ and15
language K, such that L(A) is a solution of X♦K ⊆ Xc with X ⊆ L(B).
Output: A �-NFA accepting the residue of L(A).17

Proof. Consider the language

W = L(A) ∪ L(A)♦K ∪ L(A)♦lK.19

By Lemma 4.2, W is equal to L(A) ∪ [♦K](L(A)) ∪ [♦K]−1(L(A)). As T realizes the relation [♦K]
and T −1 realizes the relation [♦K]−1, the problem can be solved if we first construct the �-NFA C =21
A∪AT ∪AT −1 accepting the language W, and then construct the �-NFA B ∩Cc accepting the language
L(B)−W , which is equal to the residue of L(A). �

23
A consequence of the above is that one can decide whether the given solution L(A) is maximal by

testing whether the residue of L(A) is empty, provided the equation is of type (c)—see Corollary 6.7.25
Moreover, the examples in Section 3 imply that one can decide whether a given regular prefix code, or
suffix code, or infix code, or error-detecting language is maximal.27

In the proof of the preceding proposition, even if A is a DFA the automaton AT , or AT −1 , might be
a �-NFA. In this case, computing Cc would require to convert C to a DFA. Thus, the above algorithm29
might require exponentially many steps. On the other hand, one hopes that when the given transducer is
of a certain particular type (or even fixed), the residue of a solution can be computed in polynomial time.31
This possibility is explored in the next section.

7. Special cases and applications33

7.1. Languages with finitely many quotients

Recall that, by Corollary 6.5, the inequation (X♦L) ⊆ Xc, (∗), is equivalent to (X♦rX) ⊆ Lc. We35
want therefore to be able to solve inequations of the form X♦X ⊆ R, for a given language R ⊆ �∗ and
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unknown X. In [10], it is shown that if both the sets of left and right quotients of Rc with respect to♦ are1
finite one can identify all the maximal solutions of the equation X♦X = R. The same argument can be
applied also for solving the inequation X♦X ⊆ R. Here we improve this result by showing how to identify3
all the maximal solutions of our inequation when one of the quotient sets is known to be finite. Indeed,
suppose that the set of left quotients of Rc with respect to♦ is finite: P1, . . . , Pn. According to Corollary5
6.11, the following method would produce all the maximal solutions of the inequation X♦X ⊆ R with
X ⊆ M:7
(i) For each i = 1, . . . , n, let T be the language P c

i ∩ (P c
i ♦rRc)c. If T♦T is a subset of R then add

T ∩M in the list of solutions.9
(ii) Remove from the list any solutions that are proper subsets of other solutions.
It should be clear that, if the set of right quotients of Rc is finite, then we can use a similar method for11
producing all the maximal solutions of our inequation. As an example, consider the insertion operation.
Recall that the right inverse of insertion is the operation of reversed dipolar deletion, and the left inverse13
of insertion is deletion. Moreover, [7,8] for every regular language F there exist finitely many languages
that can be obtained from F by dipolar deletion, and finitely many languages that can be obtained from F15
by deletion. This implies that the sets of left and right quotients of F with respect to insertion are finite.
Hence, the above method can be applied to solve the inequation X←− X ⊆ R with X ⊆ M when R is17
regular. For example, consider the inequation

X ⇀↽
′ {aa} ⊆ Xc.19

Using the facts ⇀↽′=←−r and ⇀↽
′r=←−, we can verify that the set {{aa}⇀↽ W | W ⊆ �∗} consists of all

the right quotients of ⇀↽
′r and is equal to the set of all subsets of {�, a, aa}. Moreover, for each such quotient21

Pr , say, we can compute the set �∗ − Pr − ({aa} −→ P c
r ), which is equal to �∗ − Pr − ({aa}⇀↽′l P c

r )

using the fact ⇀↽
′l=⇀↽r ′ . This process produces two maximal sets, {a, aa}c and {�, a}c, which are the23

maximal solutions of the above inequation—see Corollary 6.12.

7.2. Finite operations25

A binary operation is finite if its characteristic relation is finite. Finite operations can be obtained by
restricting the domain of other operations that are infinite, in general.27

Example 7.1. For any positive integer n, let (−→rq)n be the restriction of −→rq as follows: (w, u, v)

is in the characteristic relation of (−→rq)n if and only if it is in the characteristic relation of −→rq and29
|u|�n and |v| > 0. Then dom 2(−→rq)n is equal to � ∪ · · · ∪ �n. Moreover the solution set of the
inequation X(−→rq)n�+ ⊆ Xc with X ⊆ �∪ · · · ∪ �n is the set of all prefix codes whose longest word31
is of length at most n.

Example 7.2. For any positive integers n and m with n > m, let ��n,m be the restriction of �� as follows:33
(w, u, v) is in the characteristic relation of ��n,m if and only if it is in the characteristic relation of �� and
|u| = n and m ≥ |v| > 0. Then dom 2(��n,m) is equal to � ∪ · · · ∪ �m. Moreover the solution set of the35
inequation X��n,m�+ ⊆ Xc with X ⊆ �n is the set of all subsets of �n that are error-detecting for the
channel �s(m,∞).37



UNCORRECTED P
ROOF

YJCSS2023

ARTICLE IN PRESS
L. Kari, S. Konstantinidis / Journal of Computer and System Sciences ( ) – 19

In the above examples, the inequation X♦L ⊆ Xc with X ⊆ M is such that dom 2(♦) ⊆ L. By1
Corollary 6.5, such an inequation is equivalent to the equation

X♦rX = ∅ with X ⊆ M. (∗ ∗ ∗)3

When the operation ♦ and the set M are finite there is an algorithm to test whether (∗ ∗ ∗), hence also
(∗), has a solution of cardinality k for some given k ≥ 1—the operation ♦ is given as input by simply5
listing the elements of C♦. The problem, however, is NP-complete.

Proposition 7.3. The following problem is NP-complete.7
Input: a finite operation ♦, a finite language M and a positive integer k.
Output: Y/N , depending on whether the equation X♦X = ∅ with X ⊆ M has a solution of9
cardinality k.

Proof. Firstly, we note that the problem is in NP. Now suppose � is the alphabet of the problem. We shall11
reduce to this problem the following NP-complete problem.
Input: a graph G and a positive integer k.13
Output: Y/N, depending on whether G has a clique of k vertices.

Let G = (VG, EG) and k constitute an instance of the clique problem, where VG is the set of vertices15
and EG is the set of edges. Suppose VG = {1̄, . . . , m̄}, for some m�1, where v̄ denotes the |�|-ary
representation of the integer v using symbols from �. Define the finite operation♦G whose characteristic17
relation consists of all triples (�, ū, v̄) with ū, v̄ ∈ VG and ū �= v̄ and (ū, v̄) is not an edge in EG. Then
the graph G has a clique C of k vertices if and only if C is a solution of the equation X♦GX = ∅ with19
X ⊆ VG. This follows by the definition of♦G and the fact that, for every binary operation♦ and language
S, S♦S = ∅ if and only if (s, t) /∈ dom (♦) for all s and t in S. �

21

7.3. Decidability of maximality

We discuss now the problem of deciding whether a code of a certain type is maximal using the ideas23
developed in Proposition 6.6.

The residue of a prefix code S (see Example 3.1) is �+−(S∪S −→rq �+∪S�+) and can be computed25
in time O(|A|), when S is given by a trim DFA A. This can be done as follows. First, construct a DFA
B of size O(|A|) such that L(B) = S�+. This is possible by adding in A a new state g, which would be27
the only final state of B, and transitions f a→ g for every a ∈ � and for every (old) final state f of g. As
L(A) is a prefix code, the automaton B would be a DFA. Now let C be the DFA, of size O(|A|), obtained29
from B by making all states of B final. Then, it follows that L(C) = S ∪ (S −→rq �+)∪ S�+. As C is a
DFA, we can construct the automaton A�+ ∩ Cc in time O(|A|), where A�+ is the two-state automaton31
accepting �+. The claim follows now, as L(A�+ ∩ Cc) is the residue of S. Hence, we have shown the
following consequence of Proposition 6.6.33

Corollary 7.4. The following problem is decidable in linear time:
Input: a DFA A.35
Output: Y/N depending on whether the language L(A) is a maximal prefix code.
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We now turn to the problem of whether a given finite suffix (respectively, bifix, infix) code S is a1
maximal suffix (respectively, bifix, infix) code. As in [3], we assume that the code S is given by listing
the words comprising S and, therefore, the size of S, which we denote by ‖S‖, is equal to

∑
u∈S |u|. In3

our discussion, the trie TS of the finite language S plays an important role. This is the trim DFA

({[p] | p ∈ Pref (S)}, �, [�], {[s] | s ∈ S}, P )5

accepting S [3], where P = {[p]a→ [pa] | p ∈ Pref (S), a ∈ �, pa ∈ Pref (S)} and Pref (S) is the set
of all prefixes of S. Note that each state [p] represents the prefix p of the input word that has been read so7
far by the automaton. We shall use the following facts about tries [3] (the alphabet � is considered fixed
in our paper):9
• Given S, the trie TS is of size O(‖S‖) and can be constructed in time O(‖S‖).
• Given S, one can use the trie TS to construct a trim DFA DS , of size O(‖S‖), in time O(‖S‖) accepting11

the language �∗S. The DFA DS is called the dictionary-matching automaton of S.
First suppose S is a finite suffix code. Then the set S′ consisting of the reverses of the words in S is a13
prefix code. Moreover, S is a maximal suffix code if and only if S′ is a maximal prefix code. Hence, to
test whether S is a maximal suffix code, one constructs the trie TS′ and tests whether L(TS′) is a maximal15
prefix code using Corollary 7.4. Now suppose that S is a bifix code—this is a code that is both prefix and
suffix. By [1], S is a maximal bifix code if and only if it is a maximal prefix code and a maximal suffix17
code. Hence, the following holds.

Corollary 7.5. The following problem is decidable in linear time:19
Input: a finite language S.
Output: Y/N depending on whether S is a maximal suffix, or bifix, code.21

Consider now the case where S is a finite infix code. The residue of S is

(S ∪ S ⇀↽ �+ ∪ S ←−′ �+)c

= (S ∪ S ⇀↽ �+ ∪ S ∪ �+ ←− S)c

= (S ⇀↽ �∗ ∪ �∗ ←− S)c

= (Fact (S) ∪ �∗S�∗)c,
where Fact (S) is the set of all factors of S. Given S, one can construct the factor automaton FS of S that23
accepts the language Fact (S). This automaton is a minimal DFA of size O(‖S‖) and can be constructed
in time O(‖S‖) [3]. We also need to construct a DFA ES accepting the language �∗S�∗. For this, consider25
the dictionary-matching automaton DS . This has the same states as the trie TS does, the same final states,
and includes all the productions of TS . In addition, for each state [p] of DS and for each symbol a ∈ �,27
if there is no production of the form [p]a → [pa] in TS then we add in DS the production [p]a → [u]
where u is the longest suffix of pa that is also a prefix of S (hence, [u] would be a valid state of TS and29
DS). To obtain the desired DFA ES we modify slightly the construction of DS from TS as follows:
• Add the new productions [p]a→ [u] as specified above, unless [p] is a final state.31
• Add an extra final state G in ES and the productions Ga → G, for all a ∈ �. Moreover, for every

(existing) final state [w] and for every symbol a ∈ �, add the production [w]a→ G.33
We argue now that L(ES) = �∗S�∗. First consider any word z in �∗S�∗. This word can be written as
xy with x ∈ �∗S. Thus, there is a successful computation of the automaton DS on x which involves the35
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sequence of states [u0], [u1], . . . , [un], say, where u0 = �. Let [uk] be the first occurrence of a final state1
of DS in the above sequence of states, and let � be the computation of DS corresponding to the sequence
[u0], . . . , [uk]. In this computation the automaton reads a prefix x1 of x and, therefore x is of the form3
x1x2. By the construction of ES , � must be a computation of ES as well and, as [uk] is a final state, the
word x2y will be accepted by ES when [uk] is used as the start state. Hence, x1x2y would be accepted5
by ES when [�] is used as the start state.

Now consider a word z in L(ES). There is a computation of ES that involves a sequence of states7
q0, q1, . . . , qn with q0 = [�]. Moreover, there is a unique state qi that is a final state of DS such that all
states q0, . . . , qi are different from G and, if i < n, all states qi+1, . . . , qn are equal to G. Then in the9
computation �, say, that corresponds to the states q0, . . . , qi the automaton reads a prefix x1 of z. But �
is also a computation of DS which implies that x1 ∈ �∗S and, therefore, z ∈ �∗S�∗ as required.11

We return now to the original question of computing the residue of S. According to the above, the
residue of S is the language accepted by the automaton (FS �ES)c, which is of size O(‖S‖2). Hence, we13
have shown the following.

Corollary 7.6. The following problem is decidable in quadratic time:15
Input: a finite language S.
Output: Y/N , depending on whether S is a maximal infix code.17

We conclude the paper with the following consequence of Corollary 6.7.

Corollary 7.7. The following problem is decidable in time O(‖C‖ log ‖C‖).19
Input: Fixed-length code C that is error-detecting for the channel �s(1,∞).
Output: Y/N , depending on whether C is a maximal subset of �n with the property of being error-detecting21
for the channel �s(1,∞), where n is the length of the words in C.

Proof. By Example 4.4, the above problem is equivalent to deciding whether the solution C of23

X��� ⊆ Xc with X ⊆ �n

is maximal, and by Lemma 4.6 and Remark 4.7, the residue of the solution C is equal to �n−C��(�0∪�).25
Moreover, as C��(�0 ∪�) ⊆ �n it follows that C is maximal if and only if the cardinality of C��(�0 ∪�)

is qn, where q = |�|.27
Now note that, if C is maximal, then it must be the case that |C|+ |C|(q− 1)n�qn. This follows from

the fact that C��(�0 ∪ �) is equal to C ∪ (
⋃

w∈C w���) and the cardinality of each w��� is (q − 1)n.29
This implies that, if |C|(1 + (q − 1)n) < qn, then C is not maximal. Based on these observations, we
have the following decision procedure.31
(i) Let n be the length of the words in C and let q be the cardinality of the alphabet.

(ii) If |C|(1+ (q − 1)n) < qn then output N and quit.33
(iii) Initialize a set of words S to C and a counter to |C|.
(iv) For each word w in C, compute the (q−1)n words of w��� and insert them in S. Moreover, increment35

the counter by one each time a new word is inserted in S. If the counter becomes qn output Y and
quit.37

(v) Output N.
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Obviously, the worst case time complexity of the algorithm is dominated by steps 3 and 4. We can1
implement S as a trie T, which is initialized to TC . The cost of inserting a word of length n in a trie is
�(n). Hence, the cost of steps 3 and 4 is3

�(‖C‖)+�(|C| × (q − 1)n× n),

which is equivalent to �(‖C‖(q − 1)n) using the fact that ‖C‖ = n|C|. Also, in these steps we have that5
qn� |C|(1+ (q − 1)n), which implies

qn� |C|qn⇒ qn−1�‖C‖ ⇒ n− 1� logq ‖C‖7

and the claim of the corollary is established. �
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