
An efficient algorithm for computing the edit
distance of a regular language via input-altering

transducers

Lila Kari1, Stavros Konstantinidis2, Steffen Kopecki1,2, Meng
Yang2

1 Department of Computer Science, University of Western Ontario, London,
Ontario, Canada, lila@csd.uwo.ca, steffen@csd.uwo.ca
2 Department of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, Canada, s.konstantinidis@smu.ca, meyang.mike@gmail.com

Abstract. We revisit the problem of computing the edit distance of a regu-
lar language given via an NFA. This problem relates to the inherent maximal
error-detecting capability of the language in question. We present an efficient
algorithm for solving this problem which executes in time O(r2n2d), where r is
the cardinality of the alphabet involved, n is the number of transitions in the
given NFA, and d is the computed edit distance. We have implemented the
algorithm and present here performance tests. The correctness of the algorithm
is based on the result (also presented here) that the particular error-detection
property related to our problem can be defined via an input-altering transducer.

Keywords. algorithms, automata, complexity, edit distance, implementation,
transducers, regular language

1 Introduction

The edit distance of a language L with at least two words—also referred to
as inner edit distance of L—is the minimum edit distance between any two
different words in L. In [14], the author considers the problem of computing
the edit distance of a regular language, which is given via a nondeterministic
finite automaton (NFA), or a deterministic finite automaton (DFA). For a given
automaton a with n transitions and an alphabet of r symbols, the algorithm
proposed in [14] has worst-case time complexity

O(r2n2q2(q + r)), (1)

where, in fact, q is either the number of states in a (if a is a DFA), or the
square of the number of states in a (if a is an NFA). If the size of the alphabet
is ignored and the automaton in question has only states that can be reached
from the start state, then the number of states is O(n) and the worst-case time
complexity shown in (1) can be written as

O(n5) for DFAs, and O(n8) for NFAs. (2)

In this paper, motivated by the question of whether certain error-detection
properties can be defined via input-altering transducers, we obtain an effi-
cient algorithm to compute the edit distance of a regular language given via

1

an NFA with n transitions—see theorem 12. The algorithm, which is called
DistBestInpAlter, has worst-case time complexity

O(n2d), (3)

where d is the computed distance, which is a significant improvement over the
original algorithm in [14].

We note that an approach of computing the edit distance problem via the
error-detection property is discussed briefly in [15]. A similar approach can
be used for the edit distance problem via the error-correction property. The
new algorithm DistBestInpAlter—see theorem 12—is based on (a) the new
result that the error-detection property related to our problem is definable via
an efficient input altering transducer—see theorem 11, and (b) the observation
that the preliminary error-detection-based algorithm can be made significantly
more efficient by a nontrivial utilization of the above new result. For clarity
of presentation we present in detail not only the new algorithm, but also the
intermediate versions, all of which have been implemented in Python using the
well maintained library FAdo for automata [7]. We have also tested all versions
experimentally, and we discuss in this paper the outcomes of the tests showing
that, not only in theory, but also in practice algorithm DistBestInpAlter is
clearly more performant.

We note that some related problems involving distances between words and
languages can be found in [20,25] (edit distance between a word and a language),
and in [3, 8, 9, 12, 18] (various distances between languages). The problem con-
sidered here is technically different, as the desired distance involves different
words within the same language.

The paper is organized as follows. The next section contains basic notions
on languages, finite-state machines and edit-strings, and a few preliminary lem-
mata. Section 3 describes the approach of computing the desired edit distance
via the concepts of error-detection and -correction. Section 4 first presents the
new result that the error-detection property in question is definable via an ef-
ficient input-altering transducer—see theorem 11—and then, the main result,
algorithm DistBestInpAlter in theorem 12. Section 5 discusses the implemen-
tation and testing of the main algorithm and its intermediate versions. The last
section contains a few concluding remarks and questions for future research.

2 Notation, background and preliminary results

Most of the basic notions presented here can be found in various texts such
as [4, 21,22,26,28].

2.1 Sets, words, languages, channels

If S is any set, the expression |S| denotes the cardinality of S. When there is no
risk of confusion we denote a singleton set {u} simply as u. For example, S ∪ u
is the union of S and {u}. We use standard basic notation and terminology for

2

alphabets, words and languages—see [17], for instance. For example, Σ denotes
an alphabet, Σ+ the set of nonempty words, λ the empty word, |w| the length
of the word w. We use the concepts of (formal) language and concatenation
between words, or languages, in the usual way. We say that w is an L-word if
w ∈ L and L is a language.

A binary word relation ρ on Σ∗ is any subset of Σ∗ × Σ∗. The domain of ρ
is {u | (u, v) ∈ ρ for some v ∈ Σ∗}. A channel γ is a binary relation on Σ∗ that
is domain-preserving (or input-preserving); that is, γ ⊆ Σ∗×Σ∗ and (w,w) ∈ γ
for all words w in the domain of γ. When (u, v) ∈ γ we say that u can be
received as v via the channel γ, or v is a possible output of γ when u is used
as input. If v 6= u then we say that u can be received with errors (via γ). Here
we only consider the channel sid(k), for some k ∈ N, such that (u, v) ∈ sid(k)
if and only if v can be obtained by applying at most k errors in u, where an
error could be a deletion of a symbol in u, a substitution of a symbol in u with
another symbol, or an insertion of a symbol in u—see further below for a more
rigorous definition via edit-strings.

2.2 NFAs and transducers

A nondeterministic finite automaton with empty transitions, λ-NFA for short,
or just automaton, is a quintuple a = (Q,Σ, T, s, F) such that Q is the set of
states, Σ is the alphabet, s ∈ Q is the start (or initial) state, F ⊆ Q is the set
of final states, and T ⊆ Q × (Σ ∪ λ) × Q is the finite set of transitions. Let
(p, x, q) be a transition of a. Then x is called the label of the transition, and we
say that p has an outgoing transition (with label x). We also use the notation

p
x−→ q

for a transition (p, x, q). The λ-NFA a is called an NFA, if no transition label
is empty, that is, T ⊆ Q × Σ × Q. A deterministic finite automaton, DFA for
short, is a special type of NFA where there is no state p having two outgoing
transitions with different labels.

A path of a is a finite sequence of transitions of the form

(p0, x1, p1), (p1, x2, p2), . . . , (p`−1, x`, p`),

for some nonnegative integer `. The word x1 · · ·x` is called the label of the
path. We write p0

x−→∗ p` to indicate that there is a path with label x from p0

to p`. A path as above is called accepting if p0 is the start state and p` is a final
state. The language accepted by a, denoted as L(a), is the set of labels of all
the accepting paths of a. The automaton a is called trim, if every state appears
in some accepting path of a.

A (finite) transducer [4, 28] is a sextuple t = (Q,Σ,Γ, T, s, F) such that
Q, s, F are exactly the same as those in λ-NFAs, Σ is now called the input al-
phabet, Γ is the output alphabet, and T ⊆ Q × Σ∗ × Γ∗ × Q is the finite set

of transitions. We write (p, u/v, q), or p
u/v−−→ q for a transition—the label here

3

is (u/v), with u being the input and v being the output label. The concepts
of path, accepting path, and trim transducer are similar to those in λ-NFAs.
However, the label of a transducer path (p0, x1/y1, p1), . . . , (p`−1, x`/y`, p`) is
the pair (x1 · · ·x`, y1 · · · y`) of the two words consisting of the input and out-
put labels in the path, respectively. The relation realized by the transducer t,
denoted as R(t), is the set of labels in all the accepting paths of t. We write
t(x) for the set of possible outputs of t on input x, that is, y ∈ t(x) if and
only if (x, y) ∈ R(t). The transducer is called functional, if the relation R(t)
is a function, that is, t(x) consists of at most one word, for all inputs x. The
transducer t is said to be in standard form, if each transition (p, u/v, q) is such
that u ∈ (Σ ∪ λ) and v ∈ (Γ ∪ λ). We note that every transducer is effectively
equivalent to one (realizing the same relation, that is) in standard form.

If m is an automaton, or a transducer in standard form, then the size of m,
denoted by |m|, is the number of states plus the number of transitions in m.

2.3 Edit strings and edit distance.

The alphabet EΣ of the (basic) edit operations, which depends on the alphabet
Σ of ordinary symbols, consists of all symbols (x/y) such that x, y ∈ Σ ∪ {λ}
and at least one of x and y is in Σ. If (x/y) ∈ EΣ and x is not equal to y
then (x/y) is called an error [11]. The edit operations (a/b), (λ/a), (a/λ),
where a, b ∈ Σ − {λ} and a 6= b, are called substitution, insertion, deletion,
respectively. We write (λ/λ) for the empty word over the alphabet EΣ. We
note that λ is used as a formal symbol in the elements of EΣ. For example,
if a, b ∈ Σ then (λ/a)(b/b) 6= (b/a)(λ/b). The elements of E∗Σ are called edit
strings. The weight of an edit string h, denoted as weight(h), is the number of
errors occurring in h. For example, for

g = (a/a)(a/λ)(b/b)(b/a)(b/b), (4)

weight(g) = 2. The input and output parts of an edit string h = (x1/y1) · · · (xn/yn)
are the words (over Σ) x1 · · ·xn and y1 · · · yn, respectively. We write inp(h) for
the input part and out(h) for the output part of h. For example, for the g shown
above, inp(g) = aabbb and out(g) = abab. The inverse of an edit string h is
the edit string resulting by inverting the order of the input and output parts in
every edit operation in h. For example, the inverse of g shown above is

(a/a)(λ/a)(b/b)(a/b)(b/b).

The channel sid(k) can be defined more rigorously via edit strings:

sid(k) = {(u, v) | u = inp(h), v = out(h), for some h ∈ E∗Σ with weight(h) ≤ k}.

The edit (or Levenshtein) distance [16] between two words u and v, denoted by
δ(u, v), is the smallest number of errors (substitutions, insertions and deletions)
that can be used to transform u to v. More formally,

δ(u, v) = min{weight(h) | h ∈ E∗Σ, inp(h) = u, out(h) = v}.

4

We say that an edit string h realizes the edit distance between two words u and
v, if weight(h) = δ(u, v) and inp(h) = u and out(h) = v. For example, for
Σ = {a, b}, we have that δ(ababa, babbb) = 3 and the edit string

h = (a/λ)(b/b)(a/a)(b/b)(a/b)(λ/b)

realizes δ(ababa, babbb). Note that several edit strings can realize the distance
δ(u, v). If L is a language containing at least two words then the edit distance
of L is

δ(L) = min{δ(u, v) | u, v ∈ L and u 6= v}.

Testing whether a given NFA accepts at least two words is not a concern in this
paper, but we note that this can be done efficiently (in linear time via a breadth
first search type algorithm) [27].

Definition 1. An edit string h of nonzero weight is called reduced, if (a) the
first error in h is not an insertion, and (b) if the first error in h is a deletion
of the form (a/λ), then the first non-deletion edit operation (x/y) that follows
(a/λ) in h (if any) is such that y 6= a.

Lemma 2. Let x, y, u, v be words. The following statements hold true.

1. δ(xuy, xvy) = δ(u, v).

2. If v <p u then δ(u, v) = |u| − |v|.

3. If u 6= v, then there is a reduced edit string h realizing δ(u, v).

Proof. The first statement already appears in [16]. The second statement is
rather folklore, but we provide a proof here for the sake of completeness. Let
u = σ1 · · ·σn and v = σ1 · · ·σm, where m,n ∈ N0 and m < n and all σi’s are in
Σ. Then, the edit string

h = (σ1/σ1) · · · (σm/σm)(σm+1/λ) · · · (σn/λ)

has weight n−m and inp(h) = u and out(h) = v. We show that h realizes δ(u, v)
by proving that, for any edit string g realizing δ(u, v), weight(g) = n−m. Indeed,
first note that weight(g) ≤ weight(h) = n −m. Let i and d be the number of
insertions and deletions in g. Then |v| = |u|+ i−d, which implies n−m = d− i.
Now weight(g) ≥ d+ i ≥ d− i = n−m, as required.

For the third statement, let g0 be any edit string realizing δ(u, v). The
following process can be used to obtain the required reduced edit string h.

1. If the first error in g0 is a substitution, then h = g0.

2. If the first error in g0 is an insertion, then set g0 to the inverse of g0 and
continue with the next step.

3. If the first error in g0 is a deletion (a/λ), then g0 is of the form

g0 = (e1 · · · er)(a/λ)(a1/λ) · · · (ad/λ)g′0,

5

where the ei’s are non-errors, d ∈ N0 and each (aj/λ) is a deletion, and
g′0 does not start with a deletion. If g′0 is empty or starts with an edit
operation (x/y) in which y 6= a, then the required h is g0. If g′0 starts with
an edit operation (x/a), then it is of the form g′0 = (x/a)g′1, and the edit
string

g1 = (e1 · · · er)(a/a)(a1/λ) · · · (ad/λ)(x/λ)g′1,

realizes δ(u, v), as weight(g1) = weight(g0). The process now continues
from the first step using g1 for g0.

As the edit string g0 is finite, the above process terminates with a reduced edit
string h, as required.

The bound Da in the next lemma comes from [14]. It is always less than
or equal to the number of states in the NFA a. Moreover, there are NFAs for
which this bound is tight—see Fig. 3 in Section 5.

Lemma 3. For every NFA a accepting at least two words we have that

δ(L(a)) ≤ Da,

where Da is the number of states in the longest path in a from the start state
having no repeated state.

However, the bound Da is of no use in our context, as the problem of deter-
mining the length of a longest path in a given automaton, or a graph in general,
is NP-complete since an algorithm solving this problem can be used to decide
the existence of a Hamiltonian path; see for example [23]. There are many ways
to obtain an efficiently computable upper bound on the edit distance of L(a)
that is always at most equal to the number of states in a. For example, that
distance is always less than are equal to the distance of two shortest accepted
words. We agree to use this as a working upper bound:

Lemma 4. For every NFA a accepting at least two words we have that

δ(L(a)) ≤ Ba,

where Ba is the edit distance of two shortest words in L(a).

3 Edit distance via error-detection and -correction

In [15], the authors discuss a conceptual method for computing integral dis-
tances of regular languages—integral means that all distance values are positive
integers—via the property of error-detection. In this section, we review that
method and produce a concrete preliminary algorithm for computing the edit
distance of a regular language. We also present here a similar method, via the
property of error-correction, and the algorithm it entails. In fact this latter
algorithm estimates the edit distance, as it returns two integers, differing by

6

1, one of which is the exact edit distance value. Both algorithms have been
implemented as will be discussed in section 5.

A language L is error-detecting for a channel γ, if no L-word can be received
as a different L-word via γ, that is, for any words u and v,

u, v ∈ L and (u, v) ∈ γ → u = v

Note: The definition of error-detection in [13] uses L ∪ {λ} instead of L in the
above formula. This slight change makes the presentation here simpler and has
no bearing on any existing results regarding error-detecting languages.

A language L is error-correcting for a channel γ, if no two different L-words
can result into the same word via γ, that is,

u, v ∈ L and (u, z), (v, z) ∈ γ → u = v

This property of L ensures that any output z of the channel can be corrected
to a unique L-word.

Remark 5. The error-detection method of [15], as well as the error-correction
method, are based on the following observations, where a is an NFA and t is an
input-preserving transducer.

1. A language L is error-detecting for sid(m), if and only if δ(L) > m.

2. A language L is error-correcting for sid(k), if and only if δ(L) > 2k, [16].

3. A language L is error-detecting for a channel γ if and only if the relation

γ ∩ (L× Σ∗) ∩ (Σ∗ × L) (5)

is functional [13].

4. A language L is error-correcting for a channel γ if and only if the relation

γ−1 ∩ (Σ∗ × L) (6)

is functional [13].

5. Suppose a accepts L and t realizes γ. A transducer, denoted as (t ↓
a ↑ a), that realizes relation (5) can be constructed in time O(|t||a|2).
Moreover, a transducer, denoted as (t−1 ↑ a), that realizes relation (6)
can be constructed in time O(|t||a|) [13].

6. There is a quadratic time algorithm that decides whether a given trans-
ducer is functional [1, 2].

Using the above observations, we present first the error-detection-based algo-
rithm for computing the desired edit distance, and further below the algorithm
based on error-correction.

7

Algorithm DistErrDetect

0. Input: NFA a
1. Let Ba be edit distance bound in Lemma 4
2. Let min← 1 and max← Ba − 1
3. Perform binary search to find the largest k in {min, . . . ,max}

for which L(a) is error-detecting for sid(k) as follows:
while (min ≤ max)
a) Let k ← b(min + max)/2c
b) Construct transducer t realizing the channel sid(k)—see Fig. 1
c) Construct the transducer t′ ← (t ↓ a ↑ a)
d) If (t′ is functional) let min← k + 1

Else let max← k − 1
4. return min

[0] [1] [2] · · · [k]
σ/λ λ/σ

σ/τ

σ/σ

σ/λ λ/σ

σ/τ

σ/σ

σ/λ λ/σ

σ/τ

σ/σ

σ/λ λ/σ

σ/τ

σ/σ

Figure 1: An input-preserving transducer realizing the channel sid(k).
Each edge label σ/σ represents many transitions, one for each symbol
σ of the alphabet, and similarly for σ/λ and λ/σ. Each edge label σ/τ
represents many transitions, one for each pair of distinct symbols σ and
τ from the alphabet. Thus, if the alphabet size is r, then the size of the
transducer is O(r2k), as r, k →∞, or simply O(k) if r is fixed.

Corollary 6. Algorithm DistErrDetect computes the edit distance of a lan-
guage given via an NFA a in time

O(|a|4r4B2
a logBa),

where r is the cardinality of the alphabet used in a.

Proof. For the correctness of the algorithm, first note that the loop in step 3 is
set up such that L(a) is always error-detecting for sid(min−1). Also, based on
the observations listed in the above remark, if L(a) is error-detecting for sid(k)
but not for sid(k + 1), then the desired distance must be greater than k and at
most k + 1, hence equal to k + 1.

For the time complexity, the while loop will perform O(logBa) iterations.
In each iteration, the value k is used to construct the transducer of size O(r2k)
shown in Fig. 1 with alphabet being the set of alphabet symbols appearing in the
description of a. Then, the transducer t′ is constructed and its functionality is
tested in time O(|a|4r4k2). As k < Ba, it follows that the total time complexity
is as required.

8

We note that, in the worst case, Ba is of order O(|a|) and, assuming a fixed
alphabet, the above algorithm operates in time

O(|a|6 log |a|),

which is asymptotically better than the time complexity stated in [14] when the
given automaton is an NFA.

Next we present the error-correction-based algorithm for estimating the de-
sired edit distance.

Algorithm DistErrCorrect

0. Input: NFA a
1. Let Ba be the bound in Lemma 4
2. Let min← 1 and max← b(Ba − 1)/2c
3. Perform binary search to find the largest k in {min, . . . ,max}

for which L(a) is error-correcting for sid(k) as follows:
while (min ≤ max)
a) Let k ← b(min + max)/2c
b) Construct a transducer t realizing the channel sid(k)
c) Construct the transducer t′ ← (t−1 ↑ a)
d) If (t′ is functional) let min← k + 1

Else let max← k − 1
4. return {2 min−1, 2 min}

Corollary 7. Algorithm DistErrCorrect returns two values, differing by 1,
one of which is the edit distance of the language given via a, in time

O(|a|2r4(Ba/2)2 log(Ba/2)),

where r is the cardinality of the alphabet used in a.

Proof. For the correctness of the algorithm, first note that the loop in step 3 is
set up such that L(a) is always error-correcting for sid(min−1). Also, based on
the observations listed in the above remark, if L(a) is error-correcting for sid(k)
but not for sid(k + 1), then the desired distance must be greater than 2k and
at most 2(k + 1), hence equal to 2k + 1, or 2k + 2. Moreover, as Ba ≥ 2k + 1,
the initial value of max in step 2 is correct.

For the time complexity, the while loop will perform O(logBa) iterations.
In each iteration, the value k is used to construct the transducer of size O(r2k)
shown in Fig. 1 with alphabet being the set of alphabet symbols appearing in the
description of a. Then, the transducer t′ is constructed and its functionality
is tested in time O(|a|2r4k2). As k < Ba/2, it follows that the total time
complexity is as required.

As noted before, in the worst case, Ba is of order O(|a|) and, assuming a
fixed alphabet, the above algorithm operates in time

O(|a|4 log |a|).

9

This time complexity is asymptotically better than the one in [14] even when
the given automaton is a DFA.

4 An O(n2d) algorithm for edit distance via input-
altering transducers

In this section we present a new (exact) method for computing much faster the
desired edit distance via input-altering transducers—see theorem 12 and the
associated algorithm. A transducer t is called input-altering, if

w /∈ t(w), for all words w,

that is, the output of t is never equal to the input used. The new method is
based on the following two major observations.

(4.1) The new result (see theorem 11) that the property of error-detection for
the channel sid(k) can be described via an input-altering transducer tk of
size O(k).

(4.2) The new observation that, using an input-altering transducer in our al-
gorithms, eliminates the need for a binary search loop that builds a new
transducer in each iteration. Instead, this loop can be replaced with the
incremental construction of an NFA a′k, which depends on tk, until a cer-
tain condition is satisfied, in which case the value of k is the desired edit
distance—see further below for details.

The above observations are presented in two subsections.

4.1 An input-altering transducer for error-detection

We give first a quick summary of some concepts discussed in [6].

Remark 8. Let t be an input-altering transducer. The property Pt described by
t is the set of all languages L satisfying

t(L) ∩ L = ∅. (7)

As explained in [6], this concept constitutes a formal method for specifying
certain code properties defined via abstract binary relations [24], and allows one
to decide efficiently the property satisfaction problem by testing condition (7).
In particular, condition (7) can be tested in time

O(|a|2|t|), (8)

where a is the NFA accepting the language L and t is the input-altering trans-
ducer describing the property for which L is to be tested. This approach has
led to the development of an online language server, called I-LaSer [10].

10

We shall show (see theorem 11) that error-detection for sid(k) is definable
via the input-altering transducer tk, which is shown in Fig. 2 and defined next.
The value i in a state [i] or [i, a] is called the error counter, meaning that any
path from [0] to a state with error counter i has to be labeled u/v such that
δ(u, v) ≤ i. More precisely, we will define the edges such that a state [i, a] can
be reached from [0] via a path with label u/v if and only if u = vax for some
word x and i = |ax|, thus, v is a proper prefix of u and state [i, a] remembers
the left-most letter of u that occurs after its prefix v. A state [i] with i ≥ 1 can
only be reached via a path labeled u/v from [0] if 1 ≤ δ(u, v) ≤ i, thus, u 6= v.
Furthermore, we make sure that for u 6= v such that neither u ≤p v nor v ≤p u
there is a path from [0] to [δ(u, v)] which is labeled by u/v or v/u.

[0] [1, a] [2, a] · · · [k, a]

[1] [2] · · · [k]

a/λ

σ/σ

σ/τ

σ/λ

σ
/
σ
|σ

6=
a

λ/σ |σ 6=
a

σ/τ |τ 6=
a

σ/λ

σ
/
σ
|σ

6=
a

λ/σ |σ 6=
a

σ/τ |τ 6=
a

σ/λ

λ/σ |σ 6=
a

σ/τ |τ 6=
a

σ
/
σ
|σ

6=
a

σ/λ λ/σ

σ/τ

σ/σ

σ/λ λ/σ

σ/τ

σ/σ

σ/λ λ/σ

σ/τ

σ/σ

Figure 2: A segment of the input-altering transducer tk: for each a ∈ Σ
the complete transducer has k states of the form [i, a]. The labels σ and
τ on an edge mean: one edge for each σ, τ ∈ Σ with σ 6= τ ; for some
edge sets additional restrictions apply denoted, for example, by |σ 6=a.

Definition 9. The transducer

tk = (Q,Σ,Σ, E, [0], F)

is defined as follows. The set of states is

Q = {[i] | 0 ≤ i ≤ k} ∪ {[i, a] | 1 ≤ i ≤ k, a ∈ Σ}

with all but the initial state [0] being final states:

F = Q \ {[0]} .

The edges in tk can be divided into the four sets of edges E = E0∪Es∪Ei∪Ed.
The edges from E0 do not introduce any error, edges from the other sets model

11

one substitution (Es), insertion (Ei), or deletion (Ed):

E0 =
{

[i]
σ/σ−−→ [i]

∣∣∣ σ ∈ Σ, 0 ≤ i ≤ k
}
∪ (9){

[i, a]
σ/σ−−→ [i]

∣∣∣ a, σ ∈ Σ, a 6= σ, 1 ≤ i ≤ k
}

(10)

Es =
{

[i]
σ/τ−−→ [i+ 1]

∣∣∣ σ, τ ∈ Σ, σ 6= τ, 0 ≤ i < k
}
∪ (11){

[i, a]
σ/τ−−→ [i+ 1]

∣∣∣ a, σ, τ ∈ Σ, σ 6= τ, a 6= τ, 1 ≤ i < k
}

(12)

Ei =
{

[i]
λ/σ−−→ [i+ 1]

∣∣∣ σ ∈ Σ, 1 ≤ i < k
}
∪ (13){

[i, a]
λ/σ−−→ [i+ 1]

∣∣∣ a, σ ∈ Σ, a 6= σ, 1 ≤ i < k
}

(14)

Ed =
{

[0]
a/λ−−→ [1, a]

∣∣∣ a ∈ Σ
}
∪ (15){

[i]
σ/λ−−→ [i+ 1]

∣∣∣ σ ∈ Σ, 1 ≤ i < k
}
∪ (16){

[i, a]
σ/λ−−→ [i+ 1, a]

∣∣∣ a, σ ∈ Σ, 1 ≤ i < k
}

(17)

Terminology. If t = (Q,Σ,Σ, E, q0, F) is a transducer in standard form, then
we write te for the NFA

te = (Q,EΣ, E, q0, F)

over the edit alphabet EΣ, where the labels of the transitions in t are viewed as
elements of EΣ. Note that, the label of a path P in t is a pair of words (u/v),
whereas the label of the corresponding path in te, which we denote as P e, is an
edit string h such that inp(h) = u and out(h) = v. This type of NFA is called
an eNFA in [11].

Lemma 10. Let k ∈ N and let u, v be words. The following statements hold
true with respect to the transducer tk.

i.) In te
k, every path from the start state [0] to any state [i] or [i, a] has as

label a reduced edit string whose weight is equal to i.

ii.) If 1 ≤ δ(u, v) ≤ k and h is a reduced edit string realizing δ(u, v), then h is
accepted by te

k.

iii.) If v ∈ tk(u), then 1 ≤ δ(u, v) ≤ k.

iv.) If δ(u, v) ≤ k and va ≤p u, for some symbol a, then [0]
u/v−−→∗ [δ(u, v), a].

v.) If i ∈ N and i+ δ(u, v) ≤ k, then [i]
u/v−−→∗ [i+ δ(u, v)].

Proof. The first statement follows when we note that the definition of tk and
te
k implies the following facts: (a) An edge exists between a state with error

counter i to one with error counter i+ 1, if and only if the label of that edge is

12

an error; thus, in any path from [0] to [i] or [i, a], the label of that path consists
of exactly i errors. (b) Any edit string accepted by te

k is indeed reduced.
For the second statement, consider any reduced edit string h realizing δ(u, v).

If the first error in h is a deletion, then h is of the form

h = (e1 · · · er)(a/λ)(b1/λ) · · · (bd/λ)h′,

where each ei is a non-error edit operation of the form (σi/σi), (a/λ) is a deletion
error, d ∈ N0 and each (bj/λ) is a deletion error, and h′ is an edit string that is
either empty or starts with a non-deletion edit operation (x/y) such that y 6= a.
If h′ is nonempty, then by definition of te

k the following is a path

[0]
(e1···er)−−−−−→∗ [0]

(a/λ)(b1/λ)···(bd/λ)−−−−−−−−−−−−−→∗ [1 + d, a]
h′

−→∗ [1 + d+ weight(h′)]

accepting h. Similarly, a path accepting h exists in te
k , if h′ is empty.

Finally, one verifies that if the first error in h is a substitution, then again h
is accepted by te

k.
For the third statement, if v ∈ tk(u), then (u/v) is the label of a path P

from [0] to a final state [i] or [i, a], with 0 < i ≤ k. As the label of the path P e

has exactly i errors, it follows that δ(u, v) ≤ i ≤ k.
We also need to show that δ(u, v) ≥ 1, that is, u 6= v. First consider the

case where the path P ends at [i, a], with 1 ≤ i ≤ k. Then, the label of P e is
an edit string of the form

h = (σ1/σ1) · · · (σr/σr)(a/λ)(b1/λ) · · · (bd/λ)

and u = inp(h) = σ1 · · ·σrab1 · · · bd and v = out(h) = σ1 · · ·σr. Hence, u 6= v.
Now consider the case where the path P ends at state [i]. There are three cases.
(a) The states used in the path are [0], [1], . . . , [i]. (b) The states used in P are
[0], [1, a], . . . , [r, a], [r], . . . , [i], for some appropriate [r]. (c) The states used in
P are [0], [1, a], . . . , [r, a], [r + 1], . . . , [i], for some appropriate [r]. In all three
cases, one verifies that u 6= v. For example, in case (b), u must be of the form
xaσ1 · · ·σr−1σy and v of the form xσz, where the σj ’s are symbols, x, y, z are
words, and σ is a symbol other than a; hence, u 6= v.

For the fourth statement, let u = a1 · · · arab1 · · · bt, with each ai and bj being
a symbol, and v = a1 · · · ar. We use lemma 2. The edit string

h = (a1/a1) · · · (ar/ar)(a/λ)(b1/λ) · · · (bt/λ)

realizes δ(u, v). Moreover, this edit string is the label of a path in te
k from [0]

to [δ(u, v), a]. Hence, there is a path in tk from [0] to [δ(u, v), a] with label
(inp(h)/out(h)) = (u/v), as required.

For the fifth statement, let h be an edit string realizing δ(u, v). By definition
of te

k, at each state of the form [j] with 0 < j < k, one can follow an edge whose
label e can be of any of the four types of edit operations, and moreover, if e is
an error, then the edge goes into [j + 1], that is, [j]

e−→ [j + 1]. As h contains
exactly δ(u, v) errors, there is a path from [i] to [i+ δ(u, v)] whose label is made
of the edit operations in h. Hence, there is a path in tk from [i] to [i+ δ(u, v)]
whose label is (u/v), as required.

13

Theorem 11. For each k ∈ N, the transducer tk is input-altering and of size
O(k), and describes the property of error-detection for the channel sid(k).

Proof. By construction, it follows that tk is trim and has a number of states
and transitions that is linear with respect to k. Hence, it is indeed of size O(k).
The third statement of lemma 10 implies that the transducer is input-altering.
For the error-detection part, using the first statement of remark 5, it is sufficient
to show that, for every language L,

tk(L) ∩ L = ∅ if and only if δ(L) > k.

First, for the ‘if’ part, assume δ(L) > k and consider any words u, v ∈ L.
We need to prove v /∈ tk(u). If u = v then this holds as tk is input-altering.
Else, it follows from the third statement of lemma 10. Now for the ‘only if’ part,
assume

tk(L) ∩ L = ∅, (18)

but, for the sake of contradiction, suppose there are different words u, v ∈ L
such that 1 ≤ δ(u, v) ≤ k. If v is a prefix of u, then va ≤p u, for some a ∈ Σ,

and the fourth statement of the above lemma implies [0]
u/v−−→∗ [δ(u, v), a] and,

therefore, v ∈ tk(u), which contradicts (18). By symmetry, a contradiction
arises if u is a prefix of v.

Now consider the case where v is not a prefix of u, and u is not a prefix of v.
Then, u = xau′ and v = xbv′ for some words x, u′, v′ and symbols a, b ∈ Σ with

a 6= b.

We shall obtain a contradiction to (18) by showing the existence of a path

[0]
u/v−−→∗ ψ, or [0]

v/u−−→∗ ψ, where ψ is a final state of tk. Let h be an edit
string realizing δ(au′, bv′). Recall δ(u, v) = δ(au′, bv′). As a 6= b, the first edit
operation, say e, of h must be an error, that is, not of the form σ/σ. Let
h = eh′. We consider three cases for e. First, if e is a substitution, then
e = (a/b) and δ(u, v) = 1+δ(u′, v′). By the fifth statement of the above lemma,

[1]
u′/v′−−−→∗ [1 + δ(u′, v′)]. Then, the required path is

[0]
x/x−−→∗ [0]

a/b−−→∗ [1]
u′/v′−−−→∗ [1 + δ(u′, v′)].

Now consider the case where e = (a/λ). Then, δ(u, v) = 1 + δ(u′, bv′) and h′

realizes δ(u′, bv′). Let d be the number of deletions (if any) at the beginning of
h′ so that any edit operation following these deletions is not a deletion. Thus,
h′ is of the form h1h2 with inp(h1) = u1 and out(h1) = λ, where u1 is a word of
length d, and inp(h2) = u2 and out(h2) = bv′, for some word u2, and u′ = u1u2,
and δ(u′, bv′) = d + δ(u2, bv

′). As bv′ is nonempty, also h2 is nonempty, so let
e′ be the first edit operation of h2, which cannot be a deletion. If u2 = λ, then
e′ = (λ/b) and h2 consists of insertions, and the required path is

[0]
x/x−−→∗ [0]

a/λ−−→∗ [1, a]
u1/λ−−−→∗ [1+d, a]

e′−→∗ [1+d+1]
λ/v′−−−→∗ [1+d+1+δ(λ, v′)].

14

If u2 6= λ, then there is a symbol c such that u2 = cu′2. If c = b, then e′ cannot
be a substitution, so it must be the non-error (c/b) or the insertion (λ/b). Then,
the required path is

[0]
x/x−−→∗ [0]

a/λ−−→∗ [1, a]
u1/λ−−−→∗ [1 + d, a]

e′−→∗ [1 + d+ t]
z/v′−−−→∗ [1 + d+ t+ δ(z, v′)],

where z = u′2 and t = 0 (case of e′ = (c/b)), or z = cu′2 and t = 1 (case of
e′ = (λ/b)). If c 6= b, then e′ must be the insertion (λ/b) or the substitution
(c/b). Again, in either case, a path as required exists.

Finally, the case of e = (λ/b), is symmetric to the previous one by simply
switching the roles of u and v.

4.2 The O(n2d) algorithm for edit distance

Here we use the results of the previous subsection to arrive at an efficient al-
gorithm for computing the desired edit distance. Remark 8 and theorem 11
imply that the intermediate algorithm DistFirstInpAlter shown below cor-
rectly computes the desired edit distance. Moreover, by reasoning as in the proof
of corollary 6, it follows that this algorithm executes in time O(|a|2r2Ba logBa),
where r is the cardinality of the alphabet used in a.

Algorithm DistFirstInpAlter

0. Input: NFA a
1. Let Ba be the bound in Lemma 4
2. Let min← 1 and max← Ba − 1
3. Perform binary search to find the largest k in {min, . . . ,max}

for which L(a) is error-detecting for sid(k) as follows:
while (min ≤ max)
a) Let k ← b(min + max)/2c
b) Construct the transducer tk
c) Construct NFA a′ accepting tk(L(a)) ∩ L(a)
d) If (a′ accepts ∅) let min← k + 1

Else let max← k − 1
4. return min

We note again that, in the worst case, Ba is of order O(|a|) and, assuming
a fixed alphabet, the above algorithm operates in time

O(|a|3 log |a|),

which is asymptotically better than those of all other known algorithms. How-
ever, we now discuss in detail the second major observation stated in the be-
ginning of section 4, which leads to the most efficient algorithm in theorem 12.
In particular, for the sake of clarity, we present that algorithm in two steps.
In the first place, we notice that the while loop in DistFirstInpAlter can be
replaced with the construction of the automaton tBa−1(a) ∩ a and a search in

15

that automaton for a path from the start state to a final one in which the error
counter value is minimal (this value would be the required edit distance).

Algorithm DistNextInpAlter

0. Input: NFA a
1. Let Ba be the bound in Lemma 4
2. Construct the transducer tBa−1

3. Construct NFA a′ accepting tBa−1(L(a)) ∩ L(a)
4. Starting at the start state of a′, use breadth first search (BFS)

to visit all states. In doing so, keep track of the smallest
error counter min in the visited final states of a′.

5. return min

As usual in product constructions, the states of a′ are triples of the form
(ϕ, q, q′), where ϕ is a state of tBa−1, and q, q′ are states of a. The start
state of a′ is ([0], q0, q0), where q0 is the start state of a, and the final states of
a′ are those triples consisting of final states in tBa−1 and a. A transition

(ϕ, q, q′)
y−→ (ψ, r, r′)

exists in a′ if and only if the following transitions

ϕ
x/y−−→ ψ, q

x−→ r, q′
y−→ r′

exist in tBa−1, aλ and aλ, respectively, for some label x, where aλ results if we
add to a empty loop transitions (q, λ, q) for all states q in a. The correctness
of the above algorithm follows from lemma 10 and the definition of a′. The
breadth first search process requires time linear with respect to the size of a′,
which is

O(|a|2Ba),

and this also is the time complexity of the above algorithm (when the alphabet
is fixed).

The final improved algorithm results if we notice that the desired edit dis-
tance can be much smaller than Ba and that it can be computed using only an
‘initial’ part of tBa−1. In other words, one can first build t1 and a′1 accepting
t1(L(a))∩L(a), and test whether a′1 has any accepting path. If not, this process
is repeated by extending a′k to a′k+1 until some extended automaton, say a′d,
has an accepting path, in which case the desired distance is equal to d.

Algorithm DistBestInpAlter

0. Input: NFA a
1. Construct the transducer t1

2. Construct NFA a′ accepting t1(L(a)) ∩ L(a)
3. k ← 1
4. while (a′ has no accepting path)

a) a′ ← Extend(a′, k)
b) k ← k + 1

5. return k

16

The function Extend in the above algorithm works based on the structure of tk
in Fig. 2 and is partially shown below. For clarity, we emphasize the fact that,
in each step k of this algorithm, the final states of a′ are only triples of the form
([k, a], f, f ′) or ([k], f, f ′), that is, when i < k, no triples of the form ([i, a], f, f ′)
or ([i], f, f ′) are final states in a′.

Function Extend(a′, k) (partial view)
let b be a copy of a′

for each state of the form ([k, a], q, q′) in a′

for each transitions q
σ−→ r and q′

σ′

−→ r′ in a
if (a 6= σ′ and σ 6= σ′)

add to b the transition ([k, a], q, q′)
σ/σ′

−−−→ ([k + 1], r, r′)
if r and r′ are final in a then ([k + 1], r, r′) is final in b

if (a 6= σ′ and σ = σ′)

add to b the transition ([k, a], q, q′)
σ/σ−−→ ([k], r, r′)

if r and r′ are final in a then ([k + 1], r, r′) is final in b
· · · · · · · · ·

return the NFA b

Based on the above discussion, the correctness of the following theorem has
been established.

Theorem 12. Algorithm DistBestInpAlter computes the edit distance of the
language given via an NFA a in time O(|a|2r2d), where r is the cardinality of
the alphabet used in a and d is the computed edit distance.

5 Implementation and testing

We have implemented the main algorithm DistBestInpAlter of theorem 12, as
well as the intermediate versions

DistErrDetect, DistErrCorrect, DistFirstInpAlter,

using the FAdo library for automata [7], which is well maintained and provides
several useful tools for manipulating automata. Moreover, we have used some
of the implementations of I-LaSer [10] involving product constructions between
transducer and automaton objects of the FAdo library. We note that an imple-
mentation in C++ of the algorithm in [14] is discussed in [5], but the execution
time is too slow to be used for any meaningful comparisons with the algorithms
presented here. Our best algorithm can be executed online at [19]. The user can
enter as input an NFA in Grail or FAdo format, select the algorithm to execute,
and press the Submit button.

We have performed several tests1 for the correctness of these algorithms, as
well as two sets of tests for the time complexity, which confirm the theoretical

1All tests were performed on a machine with the following specification. Make: Acer, CPU:
AMD Athlon(tm) II X2 215, Clock speed: 2.70 GHz, Memory (RAM): 4.00 GB, Operating
System: Windows 7 64-bit.

17

result that DistBestInpAlter is indeed the fastest algorithm. We note that,
for the other three algorithms, we have skipped the step of computing the upper
bound Ba on the edit distance, as this step is the same for all these algorithms,
thus resulting in faster execution without affecting in any essential way the
performance comparisons.

The two sets of tests correspond to two sequences of automata (an) and
(bn), shown in the next two figures, for which we used n as the value of Ba.
The first test set is such that the desired distance is equal to n, for each NFA
an, that is, the distance grows with n and, in fact, it is a worst-case scenario
where the distance is equal to the number of states of the NFA. The second test
set is such that the desired distance is fixed, equal to 2, for all n.

[0] [1] · · · [n− 1]
0 0 0

1

Figure 3: The automaton an accepting the language 0n−1(10n−1)∗.

[0, 0] · · · [i, s]

[i+1, s]

f(i, s)

· · ·

· · ·

[n−1, 0]

[n−1, 1]

[n, 0]

0

1

0

1

0

1

0

1

0

1

Figure 4: The automaton bn with n2 + n + 1 states, where f(i, s) =
[i+1, (s+i+1)%(n+1)]. The states are [n, 0] and [i, s], with 0 ≤ i ≤ n−1
and 0 ≤ s ≤ n. This automaton accepts the Levenshtein code consisting
of all binary words b1 · · · bn of length n such that (

∑n
i=1 i · bi)%(n +

1) = 0, where ‘%’ is the integer division remainder operation. This
code has edit distance equal to 2. On the other hand, its distance
for insertion/deletion errors only is 3, so it is error-correcting for the
1-insertion/deletion per word channel.

18

The next table shows the actual running times of the four algorithms on
the NFAs a4, . . . ,a8,a13,a21,a31. The number in parentheses next to each ai
indicates the number of states in ai.

NFA ErrDetection ErrCorrection FirstInpAlter BestInpAlter
a5 (5) 3.94s 0.35s 0.08s 0.008s
a6 (6) 19.20s 0.48s 0.11s 0.010s
a7 (7) 107.35s 2.54s 0.18s 0.013s
a8 (8) 442.01s 4.03s 0.33s 0.016s

a13 (13) > 5 hours 144.75s 1.31s 0.020s
a21 (21) > 5 hours 12475.27s 10.21s 0.029s
a31 (31) > 5 hours > 5 hours 46.28s 0.109s

The next table shows the actual running times of the four algorithms on the
NFAs b3, . . . ,b8. The number in parentheses next to each bi indicates the
number of states in bi.

NFA ErrDetection ErrCorrection FirstInpAlter BestInpAlter
b3 (13) 0.889s 0.164s 0.098s 0.027s
b4 (21) 212.32s 7.06s 0.655s 0.039s
b5 (31) > 5 hours 72.25s 4.63s 0.097s
b6 (43) > 5 hours 3806.74s 40.79s 0.234s
b7 (57) > 5 hours > 5 hours 375.17s 0.735s
b8 (73) > 5 hours > 5 hours 2070.21s 1.919s

Let d be the computed edit distance in the above test sets. The best algorithm
has about the same performance in both test cases, even though d is a parameter
in its time complexity O(n2d). A possible explanation is that the NFA bi has
more edges than those of aj , when both bi and aj have the same number of
states. A reason why the intermediate algorithms perform a lot better on bi
than on aj with the same number of states is that the value of the edit distance
upper bound in bi is smaller than that in aj .

A further improvement to our algorithms, to be implemented, is that one can
remove from Fig. 2 all the diagonal transitions from a state [i, a] to a state [i+1].
This is because, for any edit string of the form

h = e1 · · · er (a/λ)(a1/λ) · · · (ad/λ)(σ/τ) h1

accepted by te
k, where τ /∈ {a, σ} and the ej ’s are non-errors, the automaton te

k

also accepts
g = e1 · · · er (a/τ)(a1/λ) · · · (ad/λ)(σ/λ) g1

such that inp(g) = inp(h), out(g) = out(h), and weight(g) = weight(h). More-
over te

k accepts g using none of the diagonal transitions that are to be removed
as specified above. A similar observation holds if we replace in h the edit oper-
ation (σ/τ) shown in h with (λ/σ), where σ 6= a. Of course this improvement
does not affect in any significant way the performance comparisons among the
four algorithms.

19

6 Conclusion

This paper represents a significant improvement in the time complexity of com-
puting the edit distance of a given regular language. As discussed in [14], this
problem is related to the inherent capability of a language to detect substitution,
insertion, and deletion errors. The method based on using the input-altering
transducer tk seems to adapt to other types of errors as well. For example,
one can construct a similar input-altering transducer for insertion/deletion only
errors. It seems promising to investigate the problem when the errors have
different costs (in the current setting, the cost of each error is 1).

The present contribution stemmed from the question of whether the error-
detection property for the channel sid(k) can be described by an input-altering
transducer. The more general question of whether an input-preserving trans-
ducer property of interest can be described by an input-altering transducer is
important to investigate, as this would lead to more efficient algorithms for de-
ciding the property satisfaction problem (whether, given a regular language and
a transducer property, the language satisfies the property).

References

[1] C. Allauzen and M. Mohri. Efficient algorithms for testing the twins prop-
erty. Journal of Automata, Languages and Combinatorics, 8(2):117–144,
2003.

[2] M. Béal, O. Carton, C. Prieur, and J. Sakarovitch. Squaring transducers:
An efficient procedure for deciding functionality and sequentiality. Theo-
retical Computer Science, 292(1):45–63, 2003.

[3] M. Benedikt, G. Puppis, and C. Riveros. The cost of traveling between
languages. In L. Aceto, M. Henziger, and J. Sgall, editors, ICALP 2011,
Part II. LNCS 6756, pages 234–245, Heidelberg, 2011. Springer-Verlag.

[4] J. Berstel. Transductions and Context-Free Languages. B.G. Teubner,
Stuttgart, 1979.

[5] A. Daka. Computing error-detecting capabilities of regular languages. Mas-
ter’s thesis, Dept. Mathematics and Computing Science, Saint Mary’s Uni-
versity, Halifax, NS, Canada, 2011.

[6] K. Dudzinski and S. Konstantinidis. Formal descriptions of code proper-
ties: decidability, complexity, implementation. Intern. J. Foundations of
Computer Science, 23:67–85, 2012.

[7] FAdo. Tools for formal languages manipulation. URL address:
http://fado.dcc.fc.up.pt/ Accessed in June, 2013.

[8] Y.-S. Han, S.-K. Ko, and K. Salomaa. Computing the edit-distance between
a regular language and a context-free langauge. In H.-C. Yen and O. Ibarra,
editors, DLT 2012. LNCS 7410, pages 85–96, Heidelberg, 2012. Springer.

20

[9] Y.-S. Han, S.-K. Ko, and K. Salomaa. Approximate matching between a
context-free grammar and a finite-state automaton. In S. Konstantinidis,
editor, CIAA 2013. LNCS 7982, pages 146–157, Heidelberg, 2013. Springer.

[10] I-LaSer. Independent LAnguage SERver. URL address:
http://laser.cs.smu.ca/independence/ Accessed in August, 2013.

[11] L. Kari and S. Konstantinidis. Descriptional complexity of error/edit sys-
tems. Journal of Automata, Languages and Combinatorics, 9:293–309,
2004. Full version of a paper in: Proc. Descriptional Complexity of Formal
Systems, London, Ontario, 2002.

[12] L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, and J. Xu. Finite-
state error/edit-systems and difference-measures for languages and words.
Report 2003-01, Mathematics and Computing Science, Saint Mary’s Uni-
versity, Canada, 2003.

[13] S. Konstantinidis. Transducers and the properties of error-detection, error-
correction and finite-delay decodability. Journal Of Universal Computer
Science, 8:278–291, 2002.

[14] S. Konstantinidis. Computing the edit distance of a regular language. In-
formation and Computation, 205(9):1307–1316, 2007. Full version of “Com-
puting the Levenshtein distance of a regular language,” in M.J. Dinneen
(ed.): Proc. 2005 IEEE Information Theory Workshop (ITW 2005) on Cod-
ing and Complexity, pages 113–116.

[15] S. Konstantinidis and P. Silva. Computing maximal error-detecting ca-
pabilities and distances of regular languages. Fundamenta Informaticae,
101(4):257–270, 2010.

[16] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Dokl., 10:707–710, 1966.

[17] A. Mateescu and A. Salomaa. Regular languages. In Rozenberg and Salo-
maa [21], pages 1–39.

[18] M. Mohri. Edit-distance of weighted automata: general definitions and
algorithms. Intern. J. Foundations of Computer Science, 14:957–982, 2003.

[19] O-LaSer. Other LAnguage SERver. URL address:
http://laser.cs.smu.ca/ Accessed in October, 2013.

[20] G. Pighizzini. How hard is computing the edit distance? Information and
Computation, 165:1–13, 2001.

[21] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages,
Vol. I. Springer-Verlag, Berlin, 1997.

[22] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
Berlin, 2009.

21

[23] A. Schrijver. Combinatorial Optimization: polyhedra and efficiency.

[24] H. Shyr and G. Thierrin. Codes and binary relations. In Séminaire
d’Algèbre Paul Dubreil, Paris 1975–1976 (29ème Année) , Lecture Notes
in Mathematics, pages 180–188, 1975.

[25] R. Wagner. Order-n correction for regular languages. Communications of
the ACM, 17:265–268, 1974.

[26] D. Wood. Theory of Computation. John Wiley & Sons, New York, 1987.

[27] M. Yang. Application and implementation of transducer tools in answering
certain questions about regular languages. Master’s thesis, Dept. Math-
ematics and Computing Science, Saint Mary’s University, Halifax, NS,
Canada, 2012.

[28] S. Yu. Regular languages. In Rozenberg and Salomaa [21], pages 41–110.

22

	Introduction
	Notation, background and preliminary results
	Sets, words, languages, channels
	NFAs and transducers
	Edit strings and edit distance.

	Edit distance via error-detection and -correction
	An O(n2d) algorithm for edit distance via input-altering transducers
	An input-altering transducer for error-detection
	The O(n2d) algorithm for edit distance

	Implementation and testing
	Conclusion

